期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of REs(Y,Nd)addition on high temperature oxidation kinetics,oxide layer characteristic and activation energy of AZ80 alloy 被引量:4
1
作者 Chunlong Cheng Xiaoqiang Li +3 位作者 Qichi Le Ruizhen Guo Qing Lan Jianzhong Cui 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1281-1295,共15页
The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscop... The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscope,differential scanning calorimeter(DSC)analysis,X-ray diffraction(XRD)analysis,scanning electron microscope(SEM)observation,and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the weight gain and oxidation rate of AZ80 are reduced significantly,the initiation form and propagation of cracks in oxide layer are changed.Compact and protective oxide layer forms on alloy surface with Y or Nd addition.And the activation energies of AZ80,AZ80-0.32Y and AZ8O-0.38Nd alloys calculated via Arrhenius equation are 82.556 kJ/mol,177.148kJ/mol and 136.738 kJ/mol,respectively. 展开更多
关键词 MAGNESIUM RARE-EARTH oxidation kinetics Activation energy
下载PDF
Isothermal Oxidation Kinetics of Artificial Magnetite Pellets
2
作者 张汉泉 FU Jintao +2 位作者 潘建 张峰 GUO Zhengqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1516-1523,共8页
In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chem... In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chemical analysis. The results show that when the oxidation temperature is below 1 073 K(800 ℃), the reaction is controlled by the step of internal diffusion, and the model function is 23 G(a) =1-3(1-x);+2(1-x)(α, reaction degree). When the temperature is above 1 073 K(800 ℃), the reaction mechanism was chemical reaction, and the model function is 13 G(a) =1-(1-x);. The apparent activation energy for the oxidation of artificial magnetite pellets was also determined, which was 8.90 kJ/mol for the low temperature and 67.79 kJ/mol for the high temperature. Based on the derived kinetic equation for the oxidation of artificial magnetite pellets, the calculated value is consistent with the experimental data. Compared with that of nature magnetite pellets, the apparent activation energy is decreased obviously, which indicates that the artificial magnetite pellets are oxidized more easily than nature magnetite pellets. 展开更多
关键词 artificial magnetite PELLETS oxidation kinetics SHRINKING
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:1
3
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
Oxidation behavior of 4774DD1 Ni-based single-crystal superalloy at 980℃ in air
4
作者 Yu Fang Ya-zhou Li +7 位作者 Qiang Yang Qun-gong He Xiu-fang Gong Qian Duan Hai-yang Song Fu Wang Qiong-yuan Zhang Hong Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期116-124,共9页
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method... The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h. 展开更多
关键词 nickel-base single crystal superalloy oxidation kinetics oxide film MICROSTRUCTURE mechanism
下载PDF
Decomposition kinetics of dimethyl methylphospate(chemical agent simulant) by supercritical water oxidation 被引量:2
5
作者 Bambang VERIANSYAH Jae-Duck KIM Youn-Woo LEE 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期13-16,共4页
Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An impor... Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate(DMMP), which is similar to the nerve agent VX and GB(Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633℃ at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555℃. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data. 展开更多
关键词 supercritical water oxidation kinetics chemical agent DMMP
下载PDF
Oxidation pathway and kinetics of titania slag powders during cooling process in air 被引量:2
6
作者 Wen-chao He Xue-wei Lü +1 位作者 Cheng-yi Ding Zhi-ming Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第6期981-990,共10页
The oxidation pathway and kinetics of titania slag powders in air were analyzed using differential scanning calorimetry(DSC)and thermogravimetry(TG).The oxidation pathway of titania slag powder in air was divided into... The oxidation pathway and kinetics of titania slag powders in air were analyzed using differential scanning calorimetry(DSC)and thermogravimetry(TG).The oxidation pathway of titania slag powder in air was divided into three stages according to their three exothermic peaks and three corresponding mass gain stages indicated by the respective non-isothermal DSC and TG curves.The isothermal oxidation kinetics of high titania slag powders of different sizes were analyzed using the ln-ln analysis method.The results revealed that the entire isothermal oxidation process comprises two stages.The kinetic mechanism of the first stage can be described as f(α) = 1.77(1-α) [-ln (1-α)]^((1.77-1)/1.77),f(α)= 1.97(1-α) [-ln (1-α)]^((1.97-1)/1.97),and f (α) = 1.18(1-α) [-ln (1-α)]^((1.18-1)/1.18).The kinetic mechanism of the second stage for all samples can be described as f (α)=1.5(1-α)^(2/3)[1-(1-α)^(1/3)]^(-1).The activation energies of titania slag powders with different sizes(d_(1)<0.075 mm,0.125 mm<d_(2)<0.150 mm,and 0.425 mm<d_(3)<0.600 mm)for different reaction degrees were calculated.For the given experimental conditions,the rate-controlling step in the first oxidation stage of all the samples is a chemical reaction.The rate-controlling steps of the second oxidation stage are a chemical reaction and internal diffusion(for powders d_(1)<0.075 mm)and internal diffusion(for powders 0.125 mm<d_(2)<0.150 mm and 0.425 mm<d_(3)<0.600 mm). 展开更多
关键词 high titania slag powder oxidation pathway isothermal oxidation kinetics ln-ln analysis activation energy rate-controlling step
下载PDF
Morphology of Oxide Scale and Oxidation Kinetics of Low Carbon Steel 被引量:7
7
作者 Guang-ming CAO Xiao-jiang LIU +1 位作者 Bin SUN Zhen-yu LIU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第3期335-341,共7页
The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of S... The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of SPHC for 240 min under air condition, and the temperature range was from 500 to 900 ℃. Scanning electron microscope (SEM) was used to observe cross-sectional scale morphology and analyze composition distribution of oxide scales. The morphology of oxide scale was classical three-layer structure. Fe2 03 developed as whiskers at the outermost lay- er, and interlayer was perforated-plate Fe3 04 while innermost layer was pyramidal FeO. From the oxidation curves, the oxidation mass gain per unit area with time was of parabolic relation and oxidation rate slowed down. On the ba- sis of experimental data, the isothermal oxidation kinetics model was derived and oxidation activation energy of SPHC steel was 127. 416 kJ/mol calculated from kinetics data. 展开更多
关键词 oxide scale~ morphology~ activation energy of oxidatiom' oxidation kinetics model~ low carbon steel
原文传递
Oxidation kinetics of ilmenite concentrate by non-isothermal thermogravimetric analysis 被引量:1
8
作者 Ying-yi Zhang Wei Lv +3 位作者 Xue-wei Lv Chen-guang Bai Ke-xi Han Bing Song 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第7期678-684,共7页
The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of appare... The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of apparent activation energy(Ea)were evaluated by Málek and Starink methods.The results show that under air atmosphere,the oxidation process of ilmenite concentrate is composed of three stages,and the chemical reaction(G(α)=1-(1-α)~2,whereαis the conversion degree)plays an important role in the whole oxidation process.At the first stage(α=0.05-0.30),the oxidation process is controlled gradually by secondary chemical reaction with increasing conversion degree.At the second stage(α=0.30-0.50),the oxidation process is completely controlled by the secondary chemical reaction(G(α)=1-(1-α)~2).At the third stage(α=0.50-0.95),the secondary chemical reaction weakens gradually with increasing conversion degree,and the oxidation process is controlled gradually by a variety of functions;the kinetic equations are G(α)=(1-α)^(-1)(β=10K·min^(-1),whereβis heating rate),G(α)=(1-α)^(-1/2)(β=15-20K·min^(-1)),and G(α)=(1-α)^(-2)(β=25K·min^(-1)),respectively.For the whole oxidation process,the activation energies follow a parabolic law with increasing conversion degree,and the average activation energy is 160.56kJ·mol^(-1). 展开更多
关键词 Ilmenite oxidation kinetics Phase composition Málek method Starink method
原文传递
Kinetics of Oxidation Resistance of the Ti_3Al-base Intermetallic Alloys
9
作者 郭超祺 杨炳光 马济民 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第2期138-140,共3页
1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isi... 1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isimposed by oxidation and degradation ofcreep strength,and relatively little know- 展开更多
关键词 Ti_3Al intermetallic compound oxidation kinetics
下载PDF
Effect of Oils on SBS Modified Asphalt:Rheological Characteristics and Oxidation Aging
10
作者 Jing Xu Yuquan Yao +3 位作者 Kai Zhang Jiangang Yang Jie Gao Jian Zhou 《Journal of Renewable Materials》 SCIE EI 2023年第3期1339-1351,共13页
This study focuses on the effect of oils on rheology and oxidation aging of Styrene-Butadiene-Styrene modified asphalt(SBSMA)in the long term,after reducing one low-temperature Performance Grade(PG)of SBSMA by incorpo... This study focuses on the effect of oils on rheology and oxidation aging of Styrene-Butadiene-Styrene modified asphalt(SBSMA)in the long term,after reducing one low-temperature Performance Grade(PG)of SBSMA by incorporating oils.Two oils,including corn-based bio-oil and re-refined engine oil bottom(REOB),were selected to enhance the low-temperature performance of SBSMA.All samples were subjected to Rolling Thin Film Oven(RTFO)aging and 20-h as well as 40-h Pressure Aging Vessel(PAV20 and PAV40)aging,prior to multiple stress creep recovery(MSCR),frequency sweep and Flourier transform infrared spectroscopy(FTIR)scanning.A good high-temperature performance of oil/SBS modified asphalt blends was reflected in MSCR and PG results,meanwhile non-recoverable creep compliance(Jnr)and recovery(R)were found to share a highly correlated relationship during aging progress.In addition,Glover–Rowe(G–R)parameter and phase angle master curves suggest that the improvement of cracking property mainly came from the softening effect of oils.Adding oils into SBSMA was observed to increase oxidation kinetics,but the blends with oils still exhibited better anti-oxidation aging than the base binder,mainly due to the SBS addition.Bio-oil exhibited an effect of relieving age hardening susceptibility of SBSMA. 展开更多
关键词 OIL AGING RHEOLOGY oxidation kinetics cracking resistance
下载PDF
Kinetics of Oxidation for β-Sialon in Diphase β-Sialon/Al_2O_3 Composite 被引量:5
11
作者 Youfen LI Yanruo HONG XangChong ZHONG and Tingshou LI(National Laboratory on Solid Electrolytes and Metallurgical Testing Techniques, University of Science & TechnologyBeijing, Beijing 100083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第1期21-24,共4页
Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process... Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess. 展开更多
关键词 AL kinetics of oxidation for Sialon/Al2O3 Composite
下载PDF
Studies of Unusual Oxidation States of Transition Metals Ⅱ——Kinetics and Mechanism of Oxidation of Pyruvate by Diperiodatoargentate (Ⅲ)Ion
12
作者 Shi Tiesheng and Wang Zhipu (Department of Chemistry,Hebei University ,Baoding) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1990年第2期130-134,共5页
The kinetics of oxidation of pyruvate by diperiodatoargentate( III) ion (DPA) has been studied spec-trophotometrically in alkaline medium. It was found that the reaction order with respect to both DPA and pyruvate is ... The kinetics of oxidation of pyruvate by diperiodatoargentate( III) ion (DPA) has been studied spec-trophotometrically in alkaline medium. It was found that the reaction order with respect to both DPA and pyruvate is unity and the rate equation can be expressed asThe rate increases with the increase in [OH ] and decreases with the increase in [periodate]. There is a positive ionic strength effect in this reaction system. A mechanism has been proposed to explain the experimental results. The observed activation parameters are presented. 展开更多
关键词 PYRUVATE Diperiodatoargentate(Ⅲ) kinetics oxidation Mechanism
下载PDF
New insights into the effects of silicon content on the oxidation process in silicon-containing steels 被引量:5
13
作者 Qing Yuan Guang Xu +1 位作者 Ming-xing Zhou Bei He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第9期1048-1055,共8页
Simultaneous thermal analysis(STA) was used to investigate the effects of silicon content on the oxidation kinetics of silicon-containing steels under an atmosphere and heating procedures similar to those used in in... Simultaneous thermal analysis(STA) was used to investigate the effects of silicon content on the oxidation kinetics of silicon-containing steels under an atmosphere and heating procedures similar to those used in industrial reheating furnaces for the production of hot-rolled strips. Our results show that when the heating temperature was greater than the melting point of Fe2SiO4, the oxidation rates of steels with different silicon contents were the same; the total mass gain decreased with increasing silicon content, whereas it increased with increasing oxygen content. The oxidation rates for steels with different silicon contents were constant with respect to time under isothermal conditions. In addition, the starting oxidation temperature, the intense oxidation temperature, and the finishing oxidation temperature increased with increasing silicon content; the intense oxidation temperature had no correlation with the melting of Fe2SiO4. Moreover, the silicon distributed in two forms: as Fe2SiO4 at the interface between the innermost layer of oxide scale and the iron matrix, and as particles containing silicon in grains and grain boundaries in the iron matrix. 展开更多
关键词 silicon steel oxidation kinetics iron oxides silicon dioxide silicon content
下载PDF
High-Temperature Oxidation Behavior of 5Cr21Mn9Ni4N Steel Micro-Alloyed by Rare Earth 被引量:1
14
作者 Yu Shichang Wu Shenqing +4 位作者 Gong Youjun Gong Yuansheng Lian Mingsheng Ye Gang Cheng Yijun 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期267-267,共1页
The oxidation resistance of 5Cr21Mn9Ni4N steel micro-alloying by RE at 700 - 900 ℃ was investigated. The results indicate that oxidation exponent n and oxidation activation energy are increased, and oxidation velocit... The oxidation resistance of 5Cr21Mn9Ni4N steel micro-alloying by RE at 700 - 900 ℃ was investigated. The results indicate that oxidation exponent n and oxidation activation energy are increased, and oxidation velocity constant kp is decreased when 0.2% RE is added in 5Cr21Mn9Ni4N steel. The addition of RE elements does not alter phase constitution of oxidation scale, however it improves the configuration of oxidation scale, and increases thermal stability and adhesivity of oxidation scale, which results in the raise of oxidation resistance of 5Cr21Mn9Ni4N steel at high temperature. The oxidation scale constitutes of refractory steel transfer from manganic oxide mostly to ferric oxide mostly with the increase of temperature, which leads to descend of compactness and desquamation resistance of oxidation scale. The mass increase of ferric oxide in the oxidation scale and the looseness of oxidation scale are the main reason to descend the oxidation resistance of refractory steel. 展开更多
关键词 5Cr21Mn9Ni4N steel oxidation kinetics oxidation scale oxidation resistance rare earths
下载PDF
High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel 被引量:1
15
作者 Jun-jun Yan Xue-fei Huang Wei-gang Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1244-1250,共7页
To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature o... To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel. 展开更多
关键词 ferritic heat-resistant steel high-temperature oxidation oxidation kinetics ALUMINUM
下载PDF
Oxidation Behavior of Pd-Modified Aluminide Coating at High Temperature 被引量:1
16
作者 Mengjin LI, Xiaofeng SUN, Hengrong GUAN, Xiaoxia JIANG Zhuangqi HUState Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期213-217,共5页
(Ni,Pd)AI coating, prepared by low pressure pack cementation on the Ni-base superalloy M38 where Pd-20 wt pct Ni alloy was predeposited, consists of a single β-(Ni,Pd)AI phase. The initial isothermal oxidation behavi... (Ni,Pd)AI coating, prepared by low pressure pack cementation on the Ni-base superalloy M38 where Pd-20 wt pct Ni alloy was predeposited, consists of a single β-(Ni,Pd)AI phase. The initial isothermal oxidation behavior of (Ni,Pd)AI coating was investigated by TGA, XRD, SEM/EDS at 800-1100℃. Results show that oxidation kinetics accord preferably with parabolic law at 800, 900 and 1100℃, but not at 1000℃. θ-AI203 was observed at 800-1100℃. It is found that Pd plays an important role in accelerating the diffusion of Ti from the substrate to the coating surface in the aluminide coating. 展开更多
关键词 (Ni Pd)Al coating High temperature oxidation oxidation kinetics θ-Al_2O_3
下载PDF
Oxidation behavior of the Fe-36Al-0.09C-0.09B-0.04Zr alloy at 1250℃
17
作者 Jun-you Liu Feng Li +3 位作者 Jie Liu Yi Zhang Jin-cheng Jiang Dun-xu Zou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期441-447,共7页
To explore and study the Fe-A1 system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the back... To explore and study the Fe-A1 system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250℃were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron micros- copy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructttre of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250℃. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250℃. The oxidation mechanism at 1250℃ is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3. 展开更多
关键词 Fe-alloy oxidation behavior oxide film oxidation thermodynamics oxidation kinetics
下载PDF
Comparative Study on Oxidation Behavior of Fe-5wt% Cr Alloy in Various Mixed Atmospheres at 900-1000℃
18
作者 李志峰 HE Yongquan +2 位作者 曹光明 LIN Fei 刘振宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1496-1502,共7页
The high-temperature oxidation behavior of Fe-5 wt% Cr alloys was investigated in both N+5 vol% HO and N2+21 vol% O+5 vol% HO atmospheres at 900-1000 ℃ for 120 min by the thermogravimetric analysis(TGA). The oxidatio... The high-temperature oxidation behavior of Fe-5 wt% Cr alloys was investigated in both N+5 vol% HO and N2+21 vol% O+5 vol% HO atmospheres at 900-1000 ℃ for 120 min by the thermogravimetric analysis(TGA). The oxidation kinetics, phase composition and cross-sectional microstructure of the oxide scale were contrastively analyzed in both environments. Also, the phase composition of oxide scale was measured by X-ray diffraction(XRD). The cross-sectional microstructure and the interface elements distribution were studied by electron probe microanalysis(EPMA). The experimental results demonstrated that the growth rate and the mass gain of the oxide scale in the N+5 vol% HO atmosphere were both significantly lower than the growth rate and the mass gain in the N+21 vol% O+5 vol% HO atmosphere. The apparent layer structure of the oxide scale could be observed in an oxygen-enriched environment and did not appear in a pure water vapor without oxygen. In addition, the inner oxide layer growth mechanisms and the outward diffusion of the metal cations were introduced in the atmosphere of N+5 vol% HO. Consequently, the effects of temperature and humid atmosphere on the Fe-Cr spinal scale evolution were also discussed. 展开更多
关键词 Fe-5wt% Cr alloy humid environment oxidation kinetics oxide scale ionic diffusion
下载PDF
High temperature oxidation behavior of high speed steel for hot rolls material 被引量:1
19
作者 LiZhou FangLiu +2 位作者 ChangshengLiu DaleSun LisongYao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期166-171,共6页
The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gra... The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gravimetric analysis (TGA). The microstruc- ture, morphology and oxide scale thickness of the isothermal oxidation samples were analyzed by optical microscope (OM), electron probe micro analyzer (EPMA), X-ray diffraction spectrum (XRD) and scanning electron microscope (SEM). The results indicate that the oxidation rate of HSS is very slow at 500 to 650°C, increasing gradually at 650 to 750°C, and drastically at 750 to 800°C, be- cause the phase transformation happens at about 750°C. 展开更多
关键词 high speed steel high temperature oxidation isothermal oxidation non-isothermal oxidation oxide kinetics
下载PDF
Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires 被引量:2
20
作者 Mingchao Liu Peng Jin +3 位作者 Zhiping Xu Dorian A.H.Hanaor Yixiang Gan Changqing Chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期195-199,共5页
Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model,... Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model, based upon which a two-dimensional cylindrical kinetics model is developed for the oxidation of silicon nanowires and is extended for tungsten. In the model, diffusivity is affected by the expansive oxidation reaction induced stress. The dependency of the oxidation upon curvature and temperature is modeled. Good agreement between the model predictions and available experimental data is obtained. The de- veloped model serves to quantify the oxidation in two-dimensional nanostructures and is expected to facilitate their fabrication via thermal oxidation techniques. 展开更多
关键词 Self-limiting oxidation Finite reactive region kinetics model Nanowires
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部