Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c...Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.展开更多
Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibi...Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.展开更多
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se...Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.展开更多
In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond...In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...展开更多
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal o...The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.展开更多
A kinetic model has been developed for the degradation of organic pollutants concerning with hydroperoxide ion as the initial step for generation of hydroxyl radical and its subsequent reaction mechanisms. Rate equati...A kinetic model has been developed for the degradation of organic pollutants concerning with hydroperoxide ion as the initial step for generation of hydroxyl radical and its subsequent reaction mechanisms. Rate equations were derived for depletion of ozone and pollutants in the peroxone oxidation process using ozone and hydrogen peroxide as combined oxidants. Kinetic data obtained experimentally from the hydrogen peroxide-ozone reaction and peroxone oxidation of nitrobenzene were analyzed by using the proposed rate equations.展开更多
The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H 2O 2/UV and O 3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented ...The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H 2O 2/UV and O 3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H 2O 2/UV has beneficial effect on mineralization than O 3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants.展开更多
Treatment to crystallization mother liquor containing high concentration of organic and inorganic substances is a challenge in zero liquid discharge of industrial wastewater.Acid precipitation coupled membrane-dispers...Treatment to crystallization mother liquor containing high concentration of organic and inorganic substances is a challenge in zero liquid discharge of industrial wastewater.Acid precipitation coupled membrane-dispersion advanced oxidation process(MAOP)was proposed for organics degradation before salt crystallization by evaporation.With acid-MAOP treatment CODCrin mother liquor of pulping wastewater was eliminated by 55.2%from ultrahigh initial concentration up to 12,500 mg·L^-1.The decolorization rate was 96.5%.Recovered salt was mainly NaCl(83.3 wt%)having whiteness 50 brighter than industrial baysalt of whiteness 45.The oxidation conditions were optimized as CO3=0.11 g·L^-1 and CH2O2=2.0 g·L^-1 with dispersing rate 0.53 ml·min^-1 for 100 min reaction toward acidified liquor of p H=2.Acidification has notably improved evaporation efficiency during crystallization.Addition of H2O2 made through membrane dispersion has eliminated hydroxyl radical"quench effect"and enhanced the degradation capacity,in particular,the breakage of carbon-chloride bonds(of both aliphatic and aromatic).As a result,the proposed coupling method has improved organic pollutant reduction so as the purity of salt from the wastewater mixture which can facilitate water and salt recycling in industry.展开更多
We studied the decomposition of two haloacetic acids (HAAs),dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA),in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation p...We studied the decomposition of two haloacetic acids (HAAs),dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA),in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV,H2O2/UV,O3 /H2O2,and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV,the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV,closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3-in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.展开更多
By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon ...By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.展开更多
Effects of hydraulic retention time (HRT ) and gas volume on efficiency of wastewater treatment are dis- cussed based on a simulation experiment in which the domestic swage was treated by the two-stage-bio-contact oxi...Effects of hydraulic retention time (HRT ) and gas volume on efficiency of wastewater treatment are dis- cussed based on a simulation experiment in which the domestic swage was treated by the two-stage-bio-contact oxida- tion process. The result shows that the average CODCr, BOD5 , suspended solid (SS), and ammonia-nitrogen removal rate are 94.5 %, 93.2 %, 91.7 % and 46.9 %, respectively, under the conditions of a total air/water ratio of 5∶1 , an air/water ratio of 3:1 for oxidation tank 1 and 2:1for oxidation tank 2and a hydraulic retention time of 1 h for each stage. This method is suitable for domestic sewage treatment of residential community and small towns as well.展开更多
Studies to decompose persistent organic pollutants in wastewater from chemical factories by using Advanced Oxidation Processes (AOPs) have recently been performed. Oxidation reactions involving ozone and •OH ...Studies to decompose persistent organic pollutants in wastewater from chemical factories by using Advanced Oxidation Processes (AOPs) have recently been performed. Oxidation reactions involving ozone and •OH radicals and cleavage caused by UV are the main decomposition reactions that occur in AOPs using ozone and UV. The mechanisms through which organic compounds are decomposed in AOPs are complicated and difficult to understand because various decomposition reactions occur simultaneously. The Total Organic Carbon (TOC) removal efficiencies achieved in several different AOPs were evaluated in this study. The TOC removal efficiencies were different for organic compounds with different chemical structures. The TOC was more effectively removed when aromatic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process than when using the other AOPs, and the TOC was removed more effectively by the O<sub>3</sub>-UV process than by the UV-TiO<sub>2</sub> process. However, the TOC was removed more effectively when open-chain compounds were treated using the UV-TiO<sub>2</sub> process than using the O<sub>3</sub>-UV process, and the UV-TiO<sub>2</sub> and O<sub>3</sub>-UV-TiO<sub>2</sub> processes resulted in similar TOC removal efficiencies. Therefore, it is necessary to use the O<sub>3</sub>-UV-TiO<sub>2</sub> process to decompose aromatic compounds as quickly as possible. On the other hand, the UV-TiO<sub>2</sub> process degraded the open-chain compounds most effectively, and the O<sub>3</sub>-UV-TiO<sub>2</sub> process did not need to decompose open-chain compounds. Moreover, the TOC of aromatic compounds was removed more slowly than that of open-chain compounds. The TOC removal efficiency increased with decreasing the number of carbon atoms in the molecule. The TOC removal efficiencies increased in order of the organic compounds containing methyl groups, aldehyde groups and carboxyl groups. The removal of the TOC when organic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process followed pseudo-zero-order kinetics.展开更多
In recent years, serious heavy oil pollution has frequently occurred in the ocean. Heavy oil has escaped from grounded oil carrier and drifted ashore. Drifted heavy oil contains hazardous chemical such as benzo (a) ...In recent years, serious heavy oil pollution has frequently occurred in the ocean. Heavy oil has escaped from grounded oil carrier and drifted ashore. Drifted heavy oil contains hazardous chemical such as benzo (a) pyrene and other poly aromatic hydrocarbons (PAHs). These hazardous chemicals have worse affected on sea plants and animals. Thus, it is important to develop effective elimination of hazardous chemicals or drifted petroleum from sea shore. In this study, we have investigated the decomposition of benzo (a) pyrene on artificial sea water using UV/photocatalytic oxidation process. From this study, it was found that about 90% of benzo (a) pyrene on artificial seawater was decomposed by UV/photocatalytic oxidation process. And there were no by-product from decomposition of benzo (a) pyrene. It was supposed that benzo (a) pyrene was completely decomposed using UV/photocatalytic oxidation process.展开更多
The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhe...The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm^(-1);and 33.9μW·mK^(-1),respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK^(-1);at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.展开更多
The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our prev...The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.展开更多
Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environ...Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.展开更多
Nonradical oxidation has received wide attention in advanced oxidation processes for environmental remediation.Understanding the relationship between material characteristics and their ability to initiate nonradical o...Nonradical oxidation has received wide attention in advanced oxidation processes for environmental remediation.Understanding the relationship between material characteristics and their ability to initiate nonradical oxidation processes is the key to better material design and performance.Herein,a novel titanium-based metal-organic framework MIL-125-Ti/H_(2)O_(2) system was established to show a highly selective degradation efficacy toward tetracycline antibiotics.MIL-125-Ti with the abundance of TiO6 octahedra units was found to effectively activate H_(2)O_(2) under dark conditions by forming an oxidative Ti-peroxo complex.The presence of the Ti-peroxo complex,confirmed by UV-visible spectrophotometer,fourier transform infrared spectroscopy,and X-ray photoelectron spectroscopy characterizations,showed superior degradation(>95%removal rate)of oxytetracycline hydrochloride(OTC),doxycycline hydrochloride,chlortetracycline hydrochloride,and tetracycline.Density functional theory calculations were performed to assist the elucidation on the mechanism of H_(2)O_(2) activation and antibiotics degradation.The MIL-125-Ti/H_(2)O_(2) system was highly resistant to halogens and background organics,and could well maintain its original catalytic activity in actual water matrices.It retained the ability to degrade 75%of OTC within ten test cycles.This study provides new insight into the nonradical oxidation process initiated by the unique Ti-peroxo complex of Ti-based MOF.展开更多
Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is...Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is restricted due to its unsatisfactory oxidant activation efficiency.Fortunately,recently remarkable research on deep activation mechanisms and modification of MNO_(x)have been undertaken to improve its reactivity.Herein,modification enhancement mechanisms of MNO_(x)to efficiently degrade various organic contaminants were discussed and highlighted,including metal doping,coupling with other metal oxides,composite with carbonaceous material,and compounding with other support.The activation mechanisms of different MNO_(x)and derivative-modified material(such as doped MNO_(x),metal oxide-MNO_(x)hybrids,and MNO_(x)-carbonaceous material hybrids)were summarized in great details,which was specifically categorized into both radical and non-radical pathways.The effects of pH,inorganic ions,and natural organic matter on degradation reactions are also discussed.Finally,future research directions and perspectives are presented to provide a clear interpretation on the MNO_(x)initiated AOPs.展开更多
In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their hi...In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.展开更多
As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing ant...As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing antibiotics from wastewater, H_(2)O_(2)-based advanced oxidation processes(AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability. Hence this review critically discusses:(i) Recent research progress of AOPs with the addition of H_(2)O_(2) for antibiotics removal through different methods of H_(2)O_(2) activation;(ii) recent advances in AOPs that can in-situ generate and activate H_(2)O_(2) for antibiotics removal;(iii) H_(2)O_(2)-based AOPs as a combination with other techniques for the degradation and mineralization of antibiotics in wastewater. Future perspectives about H_(2)O_(2)-based AOPs are also presented to grasp the future research trend in the area.展开更多
基金supported by National Natural Science Foundation of China(52003240)Zhejiang Provincial Natural Science Foundation of China(LQ21B070007)China Postdoctoral Science Foundation(2022M722818).
文摘Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.
基金supported by grants from the Research Grants Council of the Hong Kong SAR,China(T21-705/20-N and 16210221).
文摘Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.
基金National Key Technologies Research and Development Program in the 10th Five-year Phan(No.2001BA204B01)National Outstanding Youth Science Foundation of China(No.60025308)
文摘Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.
文摘In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...
文摘The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.
基金Supported by Guangdong Province Natural Scientific Foundation(No.970457).
文摘A kinetic model has been developed for the degradation of organic pollutants concerning with hydroperoxide ion as the initial step for generation of hydroxyl radical and its subsequent reaction mechanisms. Rate equations were derived for depletion of ozone and pollutants in the peroxone oxidation process using ozone and hydrogen peroxide as combined oxidants. Kinetic data obtained experimentally from the hydrogen peroxide-ozone reaction and peroxone oxidation of nitrobenzene were analyzed by using the proposed rate equations.
文摘The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H 2O 2/UV and O 3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H 2O 2/UV has beneficial effect on mineralization than O 3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants.
基金Financial supports from the Prospective Joint Research Project of Jiangsu Province(BY2014005-06)National Natural Science Foundation of China(U1510202)the Jiangsu National Synergistic Innovation Center for Advanced Materials(SICAM)。
文摘Treatment to crystallization mother liquor containing high concentration of organic and inorganic substances is a challenge in zero liquid discharge of industrial wastewater.Acid precipitation coupled membrane-dispersion advanced oxidation process(MAOP)was proposed for organics degradation before salt crystallization by evaporation.With acid-MAOP treatment CODCrin mother liquor of pulping wastewater was eliminated by 55.2%from ultrahigh initial concentration up to 12,500 mg·L^-1.The decolorization rate was 96.5%.Recovered salt was mainly NaCl(83.3 wt%)having whiteness 50 brighter than industrial baysalt of whiteness 45.The oxidation conditions were optimized as CO3=0.11 g·L^-1 and CH2O2=2.0 g·L^-1 with dispersing rate 0.53 ml·min^-1 for 100 min reaction toward acidified liquor of p H=2.Acidification has notably improved evaporation efficiency during crystallization.Addition of H2O2 made through membrane dispersion has eliminated hydroxyl radical"quench effect"and enhanced the degradation capacity,in particular,the breakage of carbon-chloride bonds(of both aliphatic and aromatic).As a result,the proposed coupling method has improved organic pollutant reduction so as the purity of salt from the wastewater mixture which can facilitate water and salt recycling in industry.
基金Natural Science Foundation of Chongqing under Grant No. CSTC2008BB7299.
文摘We studied the decomposition of two haloacetic acids (HAAs),dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA),in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV,H2O2/UV,O3 /H2O2,and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV,the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV,closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3-in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.
文摘By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.
文摘Effects of hydraulic retention time (HRT ) and gas volume on efficiency of wastewater treatment are dis- cussed based on a simulation experiment in which the domestic swage was treated by the two-stage-bio-contact oxida- tion process. The result shows that the average CODCr, BOD5 , suspended solid (SS), and ammonia-nitrogen removal rate are 94.5 %, 93.2 %, 91.7 % and 46.9 %, respectively, under the conditions of a total air/water ratio of 5∶1 , an air/water ratio of 3:1 for oxidation tank 1 and 2:1for oxidation tank 2and a hydraulic retention time of 1 h for each stage. This method is suitable for domestic sewage treatment of residential community and small towns as well.
文摘Studies to decompose persistent organic pollutants in wastewater from chemical factories by using Advanced Oxidation Processes (AOPs) have recently been performed. Oxidation reactions involving ozone and •OH radicals and cleavage caused by UV are the main decomposition reactions that occur in AOPs using ozone and UV. The mechanisms through which organic compounds are decomposed in AOPs are complicated and difficult to understand because various decomposition reactions occur simultaneously. The Total Organic Carbon (TOC) removal efficiencies achieved in several different AOPs were evaluated in this study. The TOC removal efficiencies were different for organic compounds with different chemical structures. The TOC was more effectively removed when aromatic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process than when using the other AOPs, and the TOC was removed more effectively by the O<sub>3</sub>-UV process than by the UV-TiO<sub>2</sub> process. However, the TOC was removed more effectively when open-chain compounds were treated using the UV-TiO<sub>2</sub> process than using the O<sub>3</sub>-UV process, and the UV-TiO<sub>2</sub> and O<sub>3</sub>-UV-TiO<sub>2</sub> processes resulted in similar TOC removal efficiencies. Therefore, it is necessary to use the O<sub>3</sub>-UV-TiO<sub>2</sub> process to decompose aromatic compounds as quickly as possible. On the other hand, the UV-TiO<sub>2</sub> process degraded the open-chain compounds most effectively, and the O<sub>3</sub>-UV-TiO<sub>2</sub> process did not need to decompose open-chain compounds. Moreover, the TOC of aromatic compounds was removed more slowly than that of open-chain compounds. The TOC removal efficiency increased with decreasing the number of carbon atoms in the molecule. The TOC removal efficiencies increased in order of the organic compounds containing methyl groups, aldehyde groups and carboxyl groups. The removal of the TOC when organic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process followed pseudo-zero-order kinetics.
文摘In recent years, serious heavy oil pollution has frequently occurred in the ocean. Heavy oil has escaped from grounded oil carrier and drifted ashore. Drifted heavy oil contains hazardous chemical such as benzo (a) pyrene and other poly aromatic hydrocarbons (PAHs). These hazardous chemicals have worse affected on sea plants and animals. Thus, it is important to develop effective elimination of hazardous chemicals or drifted petroleum from sea shore. In this study, we have investigated the decomposition of benzo (a) pyrene on artificial sea water using UV/photocatalytic oxidation process. From this study, it was found that about 90% of benzo (a) pyrene on artificial seawater was decomposed by UV/photocatalytic oxidation process. And there were no by-product from decomposition of benzo (a) pyrene. It was supposed that benzo (a) pyrene was completely decomposed using UV/photocatalytic oxidation process.
基金supported by the National Key Research and Development Program of China(Grant No.Q2019YFE0107200)。
文摘The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm^(-1);and 33.9μW·mK^(-1),respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK^(-1);at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202)+2 种基金the Shanghai Second Polytechnic University Key Discipline Construction(4th term)-Control Theory&Control Engineering(XXKPY1308)the Cultivation Program of Young Teachers in Colleges and Universities of Shanghai(ZZegdl4013)the School Foundation of Shanghai Second Polytechnic University(EGD14XQD02)
文摘The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.
基金the National Natural Science Foundation of China(Nos.52170088 and 52070133)China Postdoctoral Science Foundation(No.2021M690844)Sichuan Science and Technology Program(No.2021JDRC0027)for financially supporting this study.
文摘Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.
基金supported by the National Natural Science Foundation of China(Nos.21777116,22176150)the Fundamental Research Funds for the Central Universities。
文摘Nonradical oxidation has received wide attention in advanced oxidation processes for environmental remediation.Understanding the relationship between material characteristics and their ability to initiate nonradical oxidation processes is the key to better material design and performance.Herein,a novel titanium-based metal-organic framework MIL-125-Ti/H_(2)O_(2) system was established to show a highly selective degradation efficacy toward tetracycline antibiotics.MIL-125-Ti with the abundance of TiO6 octahedra units was found to effectively activate H_(2)O_(2) under dark conditions by forming an oxidative Ti-peroxo complex.The presence of the Ti-peroxo complex,confirmed by UV-visible spectrophotometer,fourier transform infrared spectroscopy,and X-ray photoelectron spectroscopy characterizations,showed superior degradation(>95%removal rate)of oxytetracycline hydrochloride(OTC),doxycycline hydrochloride,chlortetracycline hydrochloride,and tetracycline.Density functional theory calculations were performed to assist the elucidation on the mechanism of H_(2)O_(2) activation and antibiotics degradation.The MIL-125-Ti/H_(2)O_(2) system was highly resistant to halogens and background organics,and could well maintain its original catalytic activity in actual water matrices.It retained the ability to degrade 75%of OTC within ten test cycles.This study provides new insight into the nonradical oxidation process initiated by the unique Ti-peroxo complex of Ti-based MOF.
基金the National Natural Science Foundation of China(Nos.52170088 and 52070133)for financial support。
文摘Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is restricted due to its unsatisfactory oxidant activation efficiency.Fortunately,recently remarkable research on deep activation mechanisms and modification of MNO_(x)have been undertaken to improve its reactivity.Herein,modification enhancement mechanisms of MNO_(x)to efficiently degrade various organic contaminants were discussed and highlighted,including metal doping,coupling with other metal oxides,composite with carbonaceous material,and compounding with other support.The activation mechanisms of different MNO_(x)and derivative-modified material(such as doped MNO_(x),metal oxide-MNO_(x)hybrids,and MNO_(x)-carbonaceous material hybrids)were summarized in great details,which was specifically categorized into both radical and non-radical pathways.The effects of pH,inorganic ions,and natural organic matter on degradation reactions are also discussed.Finally,future research directions and perspectives are presented to provide a clear interpretation on the MNO_(x)initiated AOPs.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20403,22006047)Natural Science Foundation of Hebei Province(Nos.E2021203140,B2021203016)Hebei Industrial Innovation and Entrepreneurship team(No.215A7608D)。
文摘In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.
基金financially supported by National Natural Science Foundation of China(Nos.21976096,52170085 and 21773129)Tianjin Development Program for Innovation and Entrepreneurship+2 种基金Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)Tianjin Post-graduate Students Research and Innovation Project(No.2021YJSB013)Fundamental Research Funds for the Central Universities,Nankai University。
文摘As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing antibiotics from wastewater, H_(2)O_(2)-based advanced oxidation processes(AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability. Hence this review critically discusses:(i) Recent research progress of AOPs with the addition of H_(2)O_(2) for antibiotics removal through different methods of H_(2)O_(2) activation;(ii) recent advances in AOPs that can in-situ generate and activate H_(2)O_(2) for antibiotics removal;(iii) H_(2)O_(2)-based AOPs as a combination with other techniques for the degradation and mineralization of antibiotics in wastewater. Future perspectives about H_(2)O_(2)-based AOPs are also presented to grasp the future research trend in the area.