The evolution of morphology and heterostructure of BiOCl was investigated during an in situ oxidation reaction. Morphology and structure transformation of regular 2D nanoflake, 0D nanosphere or 3D nanoflower was achie...The evolution of morphology and heterostructure of BiOCl was investigated during an in situ oxidation reaction. Morphology and structure transformation of regular 2D nanoflake, 0D nanosphere or 3D nanoflower was achieved by adjusting the ratio of reagent concentration or reaction temperature, respectively. The enhanced photocatalytic degradation ability and the photocurrent intensity of BiOCl nanomaterials may be attributed to the improved degree of crystallinity and the formation of Bi/BiOCI heterostructure. The photocurrent density of Schottky battery was increased due to enhancing the optical pathway and assisting during charge separation. Crystallinity also contributed to the improvement of the photoelectric conversion efficiency and reduction of the recombination rate of photogenerated electron-hole pairs.展开更多
Small-crystal TS-1 was synthesized via a seed-induced approach using ammonia as the alkali source and tetrapropylammonium bromide as an auxiliary structure-directing agent. The TS-1 samples were characterized using X-...Small-crystal TS-1 was synthesized via a seed-induced approach using ammonia as the alkali source and tetrapropylammonium bromide as an auxiliary structure-directing agent. The TS-1 samples were characterized using X-ray diffraction, N2 adsorption-desorption, Fourier-transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, and ultraviolet-visible spectroscopy. The use of the colloidal seed reduced the crystal size, and an appropriate amount of silicalite-1 seed assisted Ti incorporation into the TS-1 framework. This method reduces the cost of TS- 1 synthesis because a significantly smaller amount of tetrapropylammonium hydroxide is used. The catalytic performance of the synthesized small-crystal TS-1 samples in cyclohexanone ammoximation was better than that of bulk TS-1 as a result of improved diffusion and a larger number of active tetrahedral Ti centers.展开更多
Transition metal cation ordering is essential for controlling the electrochemical performance of cubic spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),which is conventionally adjusted by optimizing the high temperature sintering...Transition metal cation ordering is essential for controlling the electrochemical performance of cubic spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),which is conventionally adjusted by optimizing the high temperature sintering and annealing procedures.In this present work,multiple characterization techniques,including 6,7Li NMR,XRD and HRTEM,have been combined to trace the phase transformation and morphology evolution during synthesis.It has been illustrated that simultaneous formation of LiMn_(2)O_(4)(LMO)and LiNiO_(2)(LNO)binary oxides and their conversion into highly reactive LixNi^(3+)_(y)Mn_(3.5+)_(z)O ternary intermediate is a thermal dynamically difficult but crucial step in the synthesis of LNMO ternary oxide.A new strategy of modifying the intermediates formation pathway from binary mode to ternary mode using thermal regulating agent has been adopted.LNMO synthesized with thermal regulating agent exhibits supreme rate capability,long-cycling performance(even at elevated temperature)and excellent capacity efficiency.At a high rate of 100 C,the assembled battery delivers a discharge capacity of 99 mAh g^(-1).This study provides a way to control the formation pathway of complex oxides using thermal regulating agent.展开更多
The use of nanostructured composites as catalyst supports is a promising route to prepare catalysts with high selectivity and productivity. In this work, reduced graphene oxide-TiO_2(rGP-x) composites with a variation...The use of nanostructured composites as catalyst supports is a promising route to prepare catalysts with high selectivity and productivity. In this work, reduced graphene oxide-TiO_2(rGP-x) composites with a variation of reduced graphene oxide(rGO) content were synthesized by hydrothermal method. Pd/rGP-x catalysts were prepared in incipient-wetness impregnation method for the direct synthesis of H_2O_2 from H2 and O_2. The morphology and electronic properties of catalysts were investigated by XPS, TEM, and Raman spectroscopy.The ratio of Pd^(2+)/Pd^0 and the hydrophobicity of the catalysts were increased with the rising content of rGO. As the amount of rGO in the catalysts varied in the range of 0.025 wt%–2 wt%, the selectivity of H_2O_2 exhibited a tendency of increasing firstly and then decreasing from 0.1 wt% to 2 wt%. It indicates that good catalytic performance for H_2O_2 synthesis can be achieved only when appropriate amount of rGO is introduced. The H_2O_2 selectivity and productivity of Pd/r GP-0.025 both improved remarkably compared with Pd/P25. This enhancement originated from the combined effects of the proper ratio of Pd^(2+)/Pd^0 and hydrophobicity of the catalyst.展开更多
A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sampl...A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sample was typical of superparamagnetic material.The samples were characterized by transmission electron microscope,and it is found that the particles are of small size.The Fe_3O_4/GO MNPs were further used as an adsorbent to remove Rhodamine B.The effects of initial pH of the solution,the dosage of adsorbent,temperature,contact time and the presence of interfering dyes on adsorption performance were investigated as well.The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudosecond-order kinetic model respectively.The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B.And the adsorption process was endothermic in nature.Furthermore,the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field.And the used particles could be regenerated and recycled easily.The magnetic composite could find potential applications for the removal of dye pollutants.展开更多
Two types of alumina dispersion-strengthened copper(ADSC) alloys were fabricated by a novel in-situ reactive synthesis(IRS) and a traditional internal oxidation(IO) process. The features of alumina dispersoids i...Two types of alumina dispersion-strengthened copper(ADSC) alloys were fabricated by a novel in-situ reactive synthesis(IRS) and a traditional internal oxidation(IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.展开更多
Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-cont...Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.展开更多
The effect of cerous nitrate on activity of NOS and expression of iNOS in rat hepatocyte was studied by means of reverse transcription - polymerase chain reaction ( RT-PCR). The result shows that neither high ( 50 mg....The effect of cerous nitrate on activity of NOS and expression of iNOS in rat hepatocyte was studied by means of reverse transcription - polymerase chain reaction ( RT-PCR). The result shows that neither high ( 50 mg.kg(-1)) nor low( 1 mg.kg(-1)) dose of cerous nitrate can induce the increase of expression of iNOS mRNA, but an increase of activity was observed after administration of cerous nitrate. Possible mechanism for these phenomena was discussed.展开更多
Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459...Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459(7), b = 7.1280(5), c = 6.7655(5) ? and ? = 107.611(2), belonging to the Gd2O(SiO4) structure type; 2 crystallizes in space group P63/m of the hexagonal system with a = 9.786(4) and c = 6.789(3) , belonging to the apatite Ca5Cl(PO4)3 structure type. The structure chemistry of related RE2O(SiO4) and RE5S(SiO4)3 compounds is also discussed. The optical energy gap of 2 is determined to be 2.05 eV.展开更多
Reaction of tetrakis(p-allyloxyphenyl)porphyrin and perfluoroalkanesulfonyl bromides gives tetrakis(p-polyfluoroalkoxylphenyl)substituted porphyrins.The yields are over 90%.The synthesis of the metal ion complexes of ...Reaction of tetrakis(p-allyloxyphenyl)porphyrin and perfluoroalkanesulfonyl bromides gives tetrakis(p-polyfluoroalkoxylphenyl)substituted porphyrins.The yields are over 90%.The synthesis of the metal ion complexes of these F-containing porphyrins is also reported.Preliminary results on the study of the catalytic activity of the manganese(Ⅲ)complexes of various fluorinated porphyrins on oxidation of cyclohexene indicate that the introduction of R_F group into porphyrin contributes to the stability of the catalysts.展开更多
To assess the role of oxidative metabolism and nitric oxide synthesis for elucid a ting their pathophysiological mechanisms in a Tibetan patient with essential hyp ertension Methods The serum levels of total supero...To assess the role of oxidative metabolism and nitric oxide synthesis for elucid a ting their pathophysiological mechanisms in a Tibetan patient with essential hyp ertension Methods The serum levels of total superoxide dismutase (T SOD), malondialdehyde (MDA), total antioxidant capacity (T AOC), nitric oxide (NO) and nitric oxide synthase (NOS) were assayed in sixty native Tibetans (thirty hypertensive patients and t hirty healthy volunteers as control) Results The levels of T SOD, T AOC, NO and NOS were significantly lower in the patien t group than in the control group ( P <0 01); MDA was significantly higher in the patient group than in the control group ( P <0 01) The level of MDA ha d a strong negative correlation with T SOD, T AOC, NO and NOS ( r =-0 82, -0 76, -0 79, -0 73, respectively, P <0 001 for all) Conclusion Tibetan patients with essential hypertension (EH) may have underlying oxidative metabolism dysfunction and depressed NO synthesis, both responsible for the hype rtensive process展开更多
The aim of this study is to investigate the effects of nitric oxide, formed from L-arginine, on the production of endothelin?1 in vivo and in cultured endothelial cells. In mechanically ventilated anesthetized dogs (n...The aim of this study is to investigate the effects of nitric oxide, formed from L-arginine, on the production of endothelin?1 in vivo and in cultured endothelial cells. In mechanically ventilated anesthetized dogs (n = 5), mean pulmonary arterial pressure (PAPm) and pulmonary vascular resistance (PVR) during hypoxic ventilation (FIO2 = 0.10) was 25 ?3.1 kPa and 68.7 ?10.2 kPa.s / L respectively. IG-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide synthase, increased the peak value of PAPm and PVR during hypoxic ventilation to 36.6 ?4.7 kPa and 158.4 ?25 kPa.s / L and its effect lasted for 2-3 hours. Meanwhile, plasma endothelin? level in the femoral artery increased by 20.9+ 7.1, 25.6?7.7, 28.6?7.9 pg / ml at the 60 th, 120th, 180th minute after the injection of L-NAME respectively (P<0.05 vs hypoxic control before the injection). In cultured endothelial cells from umbilical veins, endothelin-1 level of culture medium in control group was 35.1 ?.9 pg / 105 cells /ml (n=9). L-NAME increased endothelin-1 level to 42.8 ?4.9pg / 105 cells / ml (n = 9, P < 0.05) in case of 10-11 mol / L and to 43.0+ 4.7 pg / 105 cells / ml in case of 10 -7 mol/L (n=9, F<0.05). These findings indicate that endogenous nitric oxide is an inhibitory modulator of hypoxic pulmonary vasoconstriction and that nitric oxide inhibits the production of endothelin? in vivo and in cultured vascular endothelial cells.展开更多
The rational fabrication of photocatalysts with dual functions upon visible light, such as photocatalytic radioactive U(Ⅵ)reduction and value-added organic oxidation, is highly desirable but remains huge challenge. H...The rational fabrication of photocatalysts with dual functions upon visible light, such as photocatalytic radioactive U(Ⅵ)reduction and value-added organic oxidation, is highly desirable but remains huge challenge. Here, we couple the photocatalytic U(Ⅵ) reduction with the oxidative organic synthesis to one system using novel extended π-conjugated framework(Cu@ThTCPP) without the expense of sacrificial reagents. Noticeably, the as-prepared Cu@Th-TCPP linked by tetratopic tetrakis(4-carboxyphenyl)porphyrin(TCPP) ligand and unique Th(μ-O)(HCOO)(HO)secondary building unit(SBU) exhibits significantly enhanced activity when the photocatalytic U(Ⅵ) reduction and thioanisole oxidation were integrated to one system.Further experimental characterizations demonstrate that the highly conjugated framework of Cu@Th-TCPP is good for the charge transfer and separation, while incorporating Cusite further accelerates the charge-carrier dynamics, thus giving rise to the dual-functional property. Apparently, this strategy conforms to atomic economy, opens a new horizon to address radioactive environmental pollution in natural water systems and soils, and simultaneously produces valuable chemicals.展开更多
Single phase and well-crystallined todorokite were synthesized by heating and refluxing process from birnessite as a precursor. The average chemical composition of the synthesized todorokites by refluxing for 8 h and ...Single phase and well-crystallined todorokite were synthesized by heating and refluxing process from birnessite as a precursor. The average chemical composition of the synthesized todorokites by refluxing for 8 h and for 24 h was Mg0.19MnO2.11(H2O)1.15 and in0.17-MnO2.10(H2O)0.88, respectively. The crystallinity of the todorokite increased and no other phase was produced with increasing refluxing period. The synthesized todorokites have the same morphologies and the similar structural characteristics with the natural todorokites and hydro-thermally synthesized samples. The chemical compositions of the synthetic tordorokites by refluxing process are close to those of todorokites synthesized by hydrothermal process, except a higher average oxidation state of Mn for the former.展开更多
Birnessite-type MnO2 (δ-MnO2) nano-sheets were successfully synthesized by an interracial synthesis method in this work. The properties and electrochemical performance of the as-prepared δ-MnO2 were analyzed and e...Birnessite-type MnO2 (δ-MnO2) nano-sheets were successfully synthesized by an interracial synthesis method in this work. The properties and electrochemical performance of the as-prepared δ-MnO2 were analyzed and evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption measurement and electrochemical tests. This facile synthesis method enables δ-MnO2 nanosheets to show a large specific surface area (257.5 m^2 g^-1). The electrochemical test results show that the specific capacitance is 272 F g^-1 and the specific capacitance retention is over 96.7% after 1000 cycles at a scan rate of 10 mV s^-1. All results demonstrate that δ-MnO2 has a great potential application in high- performance electrochemical capacitors, and this interracial synthesis method will be a very promising method to synthesize highly active MnO2 materials in a large scale.展开更多
A series of MgAl-layered double oxides(LDO) doped with different rare-earth elements(Y, La, and Ce)were synthesized by the calcination of Mg-Al layered double hydroxides, and Ru, which were used to prepare ammonia...A series of MgAl-layered double oxides(LDO) doped with different rare-earth elements(Y, La, and Ce)were synthesized by the calcination of Mg-Al layered double hydroxides, and Ru, which were used to prepare ammonia synthesis catalysts. The as-obtained oxides and catalysts were characterized by XRD,TEM, TPD, TPR and XPS to understand their catalytic performances in ammonia synthesis. The H_2-TPR and HRTEM studies reveal that Ru/Y-LDO catalyst possesses more active Ru metal and small particle size.The XPS demonstrates that the electronic interaction between Y and Ru metals is stronger, which can be tentatively explained by most of Y inserted into the hydrotalcites structure. CO_2-TPD demonstrates that Ru/Y-LDO catalyst shows stronger basic site densities than catalysts doped with Ce and La. Higher activity of the Ru/Y-LDO catalyst can be attributed to smaller particle size, more active metal(Ru) and strong Ru-support interaction.展开更多
A nitrogen-doped titanium dioxide composite photocatalyst(N–TiO2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave techni...A nitrogen-doped titanium dioxide composite photocatalyst(N–TiO2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave technique. Photocatalytic activities of synthesized photocatalysts are evaluated by the degradation of Methyl Orange under ultraviolet light types A(UV-A), B(UV-B), and C(UV-C), visible light, and direct sunlight irradiation. Results show that by using N–TiO_2 photocatalyst prepared by the UV-assisted thermal synthesis and annealing, the degradation increases by 16.5% and 20.4%, respectively, compared to that by bare TiO2. The best results are obtained at a nitrogen to TiO2 mass ratio of 0.15(N:TiO2). The enhancement of the photocatalytic activity observed in the visible range is mainly attributed to the increasing separation rate of photogenerated charge carriers. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method for the nitrogen-doped TiO2 photocatalyst; thus, further studies are recommended for process optimization, immobilization, and scale-up to evaluate its applicability in wastewater treatment.展开更多
A green protocol for the synthesis of quinoxalines has been developed from catalytic oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines in water.The optimal conditions are involved in the use of a water...A green protocol for the synthesis of quinoxalines has been developed from catalytic oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines in water.The optimal conditions are involved in the use of a water-soluble mononuclear copper(Ⅱ) complex of a zwitterionic calix[4]arene[Cu(Ⅱ)LCH2O)]I2(1,H4L=[5,ll,17,23-tetrakis(trimethylammonium)-25,26,27,28-tetrahydroxycalix[4]arene]) as a catalyst in alkali solution after refluxing for 15 h in O2.The target quinoxaline and its derivatives were obtained in good yields(up to 88%).The procedure described in this paper is simple,practical and environmentally benign.展开更多
An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylb...An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylbenzenesulfonic acid in THF at room temperature for 24 h,and a series of the monochlorinated compounds was obtained in good yields.In this protocol,the catalyst iodobenzene was first oxidized into the hypervalent iodine intermediate,which then treated with lithium chloride and finally reacted with aromatic compounds to form the chlorinated compounds.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.51402047, 51525101), the Fundamental Research Funds for the Central Universities of China(Nos.N151004003, N150502002), the Doctoral Program of Higher Education of China(No.20130042120011) and the Open Project of State Key Laboratory of Rare Earth Resource Utilizations of China (No.RERU2014002).
文摘The evolution of morphology and heterostructure of BiOCl was investigated during an in situ oxidation reaction. Morphology and structure transformation of regular 2D nanoflake, 0D nanosphere or 3D nanoflower was achieved by adjusting the ratio of reagent concentration or reaction temperature, respectively. The enhanced photocatalytic degradation ability and the photocurrent intensity of BiOCl nanomaterials may be attributed to the improved degree of crystallinity and the formation of Bi/BiOCI heterostructure. The photocurrent density of Schottky battery was increased due to enhancing the optical pathway and assisting during charge separation. Crystallinity also contributed to the improvement of the photoelectric conversion efficiency and reduction of the recombination rate of photogenerated electron-hole pairs.
基金supported by the National Natural Science Foundation of China(21403070 and 21373088)Innovation Program of Shanghai Municipal Education Commission(13zz038)+2 种基金Key Project of the Shanghai Committee of Science and Technology(12JC1403600)National Key Technology R&D Program(2012BAE05B02)Shanghai Leading Academic Discipline Project(B409)~~
文摘Small-crystal TS-1 was synthesized via a seed-induced approach using ammonia as the alkali source and tetrapropylammonium bromide as an auxiliary structure-directing agent. The TS-1 samples were characterized using X-ray diffraction, N2 adsorption-desorption, Fourier-transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, and ultraviolet-visible spectroscopy. The use of the colloidal seed reduced the crystal size, and an appropriate amount of silicalite-1 seed assisted Ti incorporation into the TS-1 framework. This method reduces the cost of TS- 1 synthesis because a significantly smaller amount of tetrapropylammonium hydroxide is used. The catalytic performance of the synthesized small-crystal TS-1 samples in cyclohexanone ammoximation was better than that of bulk TS-1 as a result of improved diffusion and a larger number of active tetrahedral Ti centers.
基金financially supported by the National Natural Science Foundation of China(Grant No.21673065 and 21875057)the Key-Area Research and Development Program of Guangdong Province(No.1934212200002)the Innovation and Entrepreneurship Team Project of Zhuhai(No.ZH01110405170016PWC)。
文摘Transition metal cation ordering is essential for controlling the electrochemical performance of cubic spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),which is conventionally adjusted by optimizing the high temperature sintering and annealing procedures.In this present work,multiple characterization techniques,including 6,7Li NMR,XRD and HRTEM,have been combined to trace the phase transformation and morphology evolution during synthesis.It has been illustrated that simultaneous formation of LiMn_(2)O_(4)(LMO)and LiNiO_(2)(LNO)binary oxides and their conversion into highly reactive LixNi^(3+)_(y)Mn_(3.5+)_(z)O ternary intermediate is a thermal dynamically difficult but crucial step in the synthesis of LNMO ternary oxide.A new strategy of modifying the intermediates formation pathway from binary mode to ternary mode using thermal regulating agent has been adopted.LNMO synthesized with thermal regulating agent exhibits supreme rate capability,long-cycling performance(even at elevated temperature)and excellent capacity efficiency.At a high rate of 100 C,the assembled battery delivers a discharge capacity of 99 mAh g^(-1).This study provides a way to control the formation pathway of complex oxides using thermal regulating agent.
基金Supported by the National Key Basic Research Program of China(2013CB733505,2013CB733501)the National Natural Science Foundation of China(91334202)+2 种基金the Natural Science Foundation of Jiangsu Province of China(BK2012421,BK20130062)the Research Fund for the Doctoral Program of Higher Education of China(20123221120015)the Project for Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The use of nanostructured composites as catalyst supports is a promising route to prepare catalysts with high selectivity and productivity. In this work, reduced graphene oxide-TiO_2(rGP-x) composites with a variation of reduced graphene oxide(rGO) content were synthesized by hydrothermal method. Pd/rGP-x catalysts were prepared in incipient-wetness impregnation method for the direct synthesis of H_2O_2 from H2 and O_2. The morphology and electronic properties of catalysts were investigated by XPS, TEM, and Raman spectroscopy.The ratio of Pd^(2+)/Pd^0 and the hydrophobicity of the catalysts were increased with the rising content of rGO. As the amount of rGO in the catalysts varied in the range of 0.025 wt%–2 wt%, the selectivity of H_2O_2 exhibited a tendency of increasing firstly and then decreasing from 0.1 wt% to 2 wt%. It indicates that good catalytic performance for H_2O_2 synthesis can be achieved only when appropriate amount of rGO is introduced. The H_2O_2 selectivity and productivity of Pd/r GP-0.025 both improved remarkably compared with Pd/P25. This enhancement originated from the combined effects of the proper ratio of Pd^(2+)/Pd^0 and hydrophobicity of the catalyst.
基金Supported by the National Natural Science Foundation of China(21107143,21207033)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(CZY15003)
文摘A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sample was typical of superparamagnetic material.The samples were characterized by transmission electron microscope,and it is found that the particles are of small size.The Fe_3O_4/GO MNPs were further used as an adsorbent to remove Rhodamine B.The effects of initial pH of the solution,the dosage of adsorbent,temperature,contact time and the presence of interfering dyes on adsorption performance were investigated as well.The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudosecond-order kinetic model respectively.The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B.And the adsorption process was endothermic in nature.Furthermore,the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field.And the used particles could be regenerated and recycled easily.The magnetic composite could find potential applications for the removal of dye pollutants.
基金financially supported by the National Natural Science Foundation of China(NO.51464013)the Dr.Initialization Fund of Jiangxi University of Science and Technology(No.jxxjbs14013)
文摘Two types of alumina dispersion-strengthened copper(ADSC) alloys were fabricated by a novel in-situ reactive synthesis(IRS) and a traditional internal oxidation(IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.
基金the financial support from the National Natural Science Foundation of China(No.51274256)
文摘Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.
文摘The effect of cerous nitrate on activity of NOS and expression of iNOS in rat hepatocyte was studied by means of reverse transcription - polymerase chain reaction ( RT-PCR). The result shows that neither high ( 50 mg.kg(-1)) nor low( 1 mg.kg(-1)) dose of cerous nitrate can induce the increase of expression of iNOS mRNA, but an increase of activity was observed after administration of cerous nitrate. Possible mechanism for these phenomena was discussed.
基金supported by Yangzhou Engineering Technology Research Center of Petrochemical New Materials(YZM2015086)Yangzhou Science and Technology Bureau(YZ2016269)
文摘Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459(7), b = 7.1280(5), c = 6.7655(5) ? and ? = 107.611(2), belonging to the Gd2O(SiO4) structure type; 2 crystallizes in space group P63/m of the hexagonal system with a = 9.786(4) and c = 6.789(3) , belonging to the apatite Ca5Cl(PO4)3 structure type. The structure chemistry of related RE2O(SiO4) and RE5S(SiO4)3 compounds is also discussed. The optical energy gap of 2 is determined to be 2.05 eV.
文摘Reaction of tetrakis(p-allyloxyphenyl)porphyrin and perfluoroalkanesulfonyl bromides gives tetrakis(p-polyfluoroalkoxylphenyl)substituted porphyrins.The yields are over 90%.The synthesis of the metal ion complexes of these F-containing porphyrins is also reported.Preliminary results on the study of the catalytic activity of the manganese(Ⅲ)complexes of various fluorinated porphyrins on oxidation of cyclohexene indicate that the introduction of R_F group into porphyrin contributes to the stability of the catalysts.
文摘To assess the role of oxidative metabolism and nitric oxide synthesis for elucid a ting their pathophysiological mechanisms in a Tibetan patient with essential hyp ertension Methods The serum levels of total superoxide dismutase (T SOD), malondialdehyde (MDA), total antioxidant capacity (T AOC), nitric oxide (NO) and nitric oxide synthase (NOS) were assayed in sixty native Tibetans (thirty hypertensive patients and t hirty healthy volunteers as control) Results The levels of T SOD, T AOC, NO and NOS were significantly lower in the patien t group than in the control group ( P <0 01); MDA was significantly higher in the patient group than in the control group ( P <0 01) The level of MDA ha d a strong negative correlation with T SOD, T AOC, NO and NOS ( r =-0 82, -0 76, -0 79, -0 73, respectively, P <0 001 for all) Conclusion Tibetan patients with essential hypertension (EH) may have underlying oxidative metabolism dysfunction and depressed NO synthesis, both responsible for the hype rtensive process
文摘The aim of this study is to investigate the effects of nitric oxide, formed from L-arginine, on the production of endothelin?1 in vivo and in cultured endothelial cells. In mechanically ventilated anesthetized dogs (n = 5), mean pulmonary arterial pressure (PAPm) and pulmonary vascular resistance (PVR) during hypoxic ventilation (FIO2 = 0.10) was 25 ?3.1 kPa and 68.7 ?10.2 kPa.s / L respectively. IG-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide synthase, increased the peak value of PAPm and PVR during hypoxic ventilation to 36.6 ?4.7 kPa and 158.4 ?25 kPa.s / L and its effect lasted for 2-3 hours. Meanwhile, plasma endothelin? level in the femoral artery increased by 20.9+ 7.1, 25.6?7.7, 28.6?7.9 pg / ml at the 60 th, 120th, 180th minute after the injection of L-NAME respectively (P<0.05 vs hypoxic control before the injection). In cultured endothelial cells from umbilical veins, endothelin-1 level of culture medium in control group was 35.1 ?.9 pg / 105 cells /ml (n=9). L-NAME increased endothelin-1 level to 42.8 ?4.9pg / 105 cells / ml (n = 9, P < 0.05) in case of 10-11 mol / L and to 43.0+ 4.7 pg / 105 cells / ml in case of 10 -7 mol/L (n=9, F<0.05). These findings indicate that endogenous nitric oxide is an inhibitory modulator of hypoxic pulmonary vasoconstriction and that nitric oxide inhibits the production of endothelin? in vivo and in cultured vascular endothelial cells.
基金supported by Jiangxi Province Key Laboratory of Synthetic Chemistry(JXSC202004)the Foundation of Jiangxi Educational Committee(GJJ200731)the Natural Science Foundation of Jiangxi Province of China(20192BAB213001)。
文摘The rational fabrication of photocatalysts with dual functions upon visible light, such as photocatalytic radioactive U(Ⅵ)reduction and value-added organic oxidation, is highly desirable but remains huge challenge. Here, we couple the photocatalytic U(Ⅵ) reduction with the oxidative organic synthesis to one system using novel extended π-conjugated framework(Cu@ThTCPP) without the expense of sacrificial reagents. Noticeably, the as-prepared Cu@Th-TCPP linked by tetratopic tetrakis(4-carboxyphenyl)porphyrin(TCPP) ligand and unique Th(μ-O)(HCOO)(HO)secondary building unit(SBU) exhibits significantly enhanced activity when the photocatalytic U(Ⅵ) reduction and thioanisole oxidation were integrated to one system.Further experimental characterizations demonstrate that the highly conjugated framework of Cu@Th-TCPP is good for the charge transfer and separation, while incorporating Cusite further accelerates the charge-carrier dynamics, thus giving rise to the dual-functional property. Apparently, this strategy conforms to atomic economy, opens a new horizon to address radioactive environmental pollution in natural water systems and soils, and simultaneously produces valuable chemicals.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.40101017 and 40071048) by the Research Fund for the Doctoral Program of Higher Education(Grant No.2002050411).
文摘Single phase and well-crystallined todorokite were synthesized by heating and refluxing process from birnessite as a precursor. The average chemical composition of the synthesized todorokites by refluxing for 8 h and for 24 h was Mg0.19MnO2.11(H2O)1.15 and in0.17-MnO2.10(H2O)0.88, respectively. The crystallinity of the todorokite increased and no other phase was produced with increasing refluxing period. The synthesized todorokites have the same morphologies and the similar structural characteristics with the natural todorokites and hydro-thermally synthesized samples. The chemical compositions of the synthetic tordorokites by refluxing process are close to those of todorokites synthesized by hydrothermal process, except a higher average oxidation state of Mn for the former.
基金financial support by the One Hundred Talent Program of the Chinese Academy of Sciences and the National Natural Science Foundation of China(No.51302264)
文摘Birnessite-type MnO2 (δ-MnO2) nano-sheets were successfully synthesized by an interracial synthesis method in this work. The properties and electrochemical performance of the as-prepared δ-MnO2 were analyzed and evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption measurement and electrochemical tests. This facile synthesis method enables δ-MnO2 nanosheets to show a large specific surface area (257.5 m^2 g^-1). The electrochemical test results show that the specific capacitance is 272 F g^-1 and the specific capacitance retention is over 96.7% after 1000 cycles at a scan rate of 10 mV s^-1. All results demonstrate that δ-MnO2 has a great potential application in high- performance electrochemical capacitors, and this interracial synthesis method will be a very promising method to synthesize highly active MnO2 materials in a large scale.
基金Project supported by the Natural Science Foundation of Fujian Province(2014J01043)the National Natural Science Foundation of China(21203028)PetroChina Innovation Foundation(2016D-5007-0504)
文摘A series of MgAl-layered double oxides(LDO) doped with different rare-earth elements(Y, La, and Ce)were synthesized by the calcination of Mg-Al layered double hydroxides, and Ru, which were used to prepare ammonia synthesis catalysts. The as-obtained oxides and catalysts were characterized by XRD,TEM, TPD, TPR and XPS to understand their catalytic performances in ammonia synthesis. The H_2-TPR and HRTEM studies reveal that Ru/Y-LDO catalyst possesses more active Ru metal and small particle size.The XPS demonstrates that the electronic interaction between Y and Ru metals is stronger, which can be tentatively explained by most of Y inserted into the hydrotalcites structure. CO_2-TPD demonstrates that Ru/Y-LDO catalyst shows stronger basic site densities than catalysts doped with Ce and La. Higher activity of the Ru/Y-LDO catalyst can be attributed to smaller particle size, more active metal(Ru) and strong Ru-support interaction.
基金The financial support of Natural Sciences and Engineering Research Council of Canada (NSERC)Ontario Graduate Scholarship (OGS) programRyerson University is greatly appreciated
文摘A nitrogen-doped titanium dioxide composite photocatalyst(N–TiO2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave technique. Photocatalytic activities of synthesized photocatalysts are evaluated by the degradation of Methyl Orange under ultraviolet light types A(UV-A), B(UV-B), and C(UV-C), visible light, and direct sunlight irradiation. Results show that by using N–TiO_2 photocatalyst prepared by the UV-assisted thermal synthesis and annealing, the degradation increases by 16.5% and 20.4%, respectively, compared to that by bare TiO2. The best results are obtained at a nitrogen to TiO2 mass ratio of 0.15(N:TiO2). The enhancement of the photocatalytic activity observed in the visible range is mainly attributed to the increasing separation rate of photogenerated charge carriers. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method for the nitrogen-doped TiO2 photocatalyst; thus, further studies are recommended for process optimization, immobilization, and scale-up to evaluate its applicability in wastewater treatment.
基金the financial supports from the National Natural Science Foundation of China(Nos.21271134, 21373142,21531006 and 21671144)the State Key Laboratory of Organometallic Chemistry,Shanghai Institute of Organic Chemistry(No.2015kf-07)+2 种基金supports from the "333" Project of Jiangsu Provincethe Priority Academic Program Development of Jiangsu Higher Education Institutionsthe "SooChow Scholar" Program of Soochow University
文摘A green protocol for the synthesis of quinoxalines has been developed from catalytic oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines in water.The optimal conditions are involved in the use of a water-soluble mononuclear copper(Ⅱ) complex of a zwitterionic calix[4]arene[Cu(Ⅱ)LCH2O)]I2(1,H4L=[5,ll,17,23-tetrakis(trimethylammonium)-25,26,27,28-tetrahydroxycalix[4]arene]) as a catalyst in alkali solution after refluxing for 15 h in O2.The target quinoxaline and its derivatives were obtained in good yields(up to 88%).The procedure described in this paper is simple,practical and environmentally benign.
基金Financial support from the Natural Science Foundation of China (No.21072176)
文摘An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylbenzenesulfonic acid in THF at room temperature for 24 h,and a series of the monochlorinated compounds was obtained in good yields.In this protocol,the catalyst iodobenzene was first oxidized into the hypervalent iodine intermediate,which then treated with lithium chloride and finally reacted with aromatic compounds to form the chlorinated compounds.