期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds
1
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 Lignin model compounds β-O-4 dimers Electrochemical oxidation oxidation mechanisms Substituent effect
下载PDF
Oxidation mechanism of high-volume fraction SiCp/Al composite under laser irradiation and subsequent machining
2
作者 Hanliang Liu Guolong Zhao +5 位作者 Zhiwen Nian Zhipeng Huang Kai Yang Conghua Liu Peng Wang Zhenkuan Diao 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期34-47,共14页
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra... Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality. 展开更多
关键词 SiCp/Al composite oxidation mechanism Nanosecond pulsed laser Laser-induced oxidation Heat-affected zone
下载PDF
Recent Advances in the Comprehension and Regulation of Lattice Oxygen Oxidation Mechanism in Oxygen Evolution Reaction
3
作者 Xiaokang Liu Zexing He +6 位作者 Muhammad Ajmal Chengxiang Shi Ruijie Gao Lun Pan Zhen‑Feng Huang Xiangwen Zhang Ji‑Jun Zou 《Transactions of Tianjin University》 EI CAS 2023年第4期247-253,共7页
Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution... Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM. 展开更多
关键词 Water electrolysis Oxygen evolution reaction(OER) Adsorbate evolution mechanism(AEM) Lattice oxygen oxidation mechanism(LOM)
下载PDF
Antagonism effect of residual S triggers the dual-path mechanism for water oxidation
4
作者 Li Liu Jinming Cao +5 位作者 Siqi Hu Tinghui Liu Can Xu Wensheng Fu Xinguo Ma Xiaohui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期568-579,I0014,共13页
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ... Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability. 展开更多
关键词 Electrochemical reconstruction Adsorbate evolution mechanism Lattice oxygen oxidation mechanism Oxygen evolution reaction Residual sulfur
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:1
5
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
High-temperature oxidation mechanism of ZrCoSb-based half-Heusler thermoelectric compounds
6
作者 Jinyu Gu Lei Wang +6 位作者 Qingfeng Song Chao Wang Xugui Xia Jincheng Liao Yi-Yang Sun Lidong Chen Shengqiang Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期242-249,共8页
ZrCoSb-based half-Heusler(HH)compounds are among the most promising thermoelectric(TE)materials for high-temperature power generation.Oxidation resistance is one of the key issues for realizing the practical applicati... ZrCoSb-based half-Heusler(HH)compounds are among the most promising thermoelectric(TE)materials for high-temperature power generation.Oxidation resistance is one of the key issues for realizing the practical application of TE materials for long-term service in the ambient working environment.In this work,the oxidation behavior of Zr_(0.5)Hf_(0.5)CoSb_(0.8)Sn_(0.2)(ZHCSS)half-Heusler is systematically studied in the service temperature range from 873 to 1073 K.It is revealed that three typical layers of oxidation products tend to form on the surface of HH sample,namely,the dense oxide layer(DOL)composed of(Zr,Hf)O_(2) and CoSb,the alternate oxide layer(AOL)composed of repeated(Zr,Hf)O_(2) and CoSb_(2)O_(6)/Co_(3)O_(4),and the CoSb layer between the DOL and AOL.The mass gain during oxidation is mainly caused by the rapid growth of AOL,which is controlled by the outward diffusion of Zr/Hf and the inward diffusion of oxygen.The formation of a continuous CoSb layer and DOL is found beneficial to block the outward diffusion of Zr/Hf.Based on the analysis of the dominant factors on the outward and inward diffusions as well as the reaction activation energy,a simple approach is proposed to improve the oxidation resistance of Zr_(0.5)Hf_(0.5)CoSb_(0.8)Sn_(0.2)by pre-oxidizing the sample in low oxygen pressure to form the dense(Zr,Hf)O_(2) and CoSb layers as oxidation protecting and/or diffusion blocking layers.The oxidation test shows the effectiveness of such pre-oxidation on the formation and growth of the AOL and therefore on improving the service stability of Zr_(0.5)Hf_(0.5)CoSb_(0.8)Sn_(0.2)at high temperatures in the air. 展开更多
关键词 THERMOELECTRIC Half-Heusler compounds oxidation mechanism
原文传递
Research progress on classification,source,application of phytosterol esters,and their thermal oxidation stability
7
作者 Dami Li Shangde Sun Jingnan Chen 《Grain & Oil Science and Technology》 CAS 2024年第1期1-11,共11页
Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailab... Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailability than free phytosterols.In recent years,phytosterol esters have attracted increasing attention.However,during food processing,phytosterol esters are susceptible to degradation at high temperatures,resulting in certain losses and formation of potentially harmful substances for humans.This paper reviews the relevant literatures and updates on the thermal oxidation stability of phytosterol esters in recent years from the following aspects:(i)Sources,physiological activities,and applications of phytosterol esters;(ii)Oxidation mechanism of phytosterol esters;(iii)Effects of phytosterols species,the volume of addition,food matrix,heating temperature and time,and antioxidants on the thermal loss and oxidation stability of phytosterol esters.The research progress on the safety of phytosterol esters is also discussed in detail.Additionally,the prospects for future research are highlighted. 展开更多
关键词 Thermal stability Loss rate oxidation mechanism Phytosterol esters
下载PDF
Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review 被引量:2
8
作者 Ya Wei Yu Fu +5 位作者 Zhi-min Pan Yi-chong Ma Hong-xu Cheng Qian-cheng Zhao Hong Luo Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第6期915-930,共16页
High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials h... High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced. 展开更多
关键词 high-entropy alloy high-temperature oxidation influencing factors oxidation mechanism
下载PDF
Dynamic oxidation mechanism of carbon fiber reinforced SiC matrix composite in high-enthalpy and high-speed plasmas 被引量:1
9
作者 Lingwei YANG Xueren XIAO +6 位作者 Liping LIU Jie LUO Kai JIANG Xinxing HAN Changhao ZHAO Jun ZHANG Guolin WANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第2期365-377,共13页
This work employed an inductively coupled plasma wind tunnel to study the dynamic oxidation mechanisms of carbon fiber reinforced SiC matrix composite(C_(f)/SiC)in high-enthalpy and high-speed plasmas.The results high... This work employed an inductively coupled plasma wind tunnel to study the dynamic oxidation mechanisms of carbon fiber reinforced SiC matrix composite(C_(f)/SiC)in high-enthalpy and high-speed plasmas.The results highlighted a transition of passive/active oxidations of SiC at 800–1600℃and 1–5 kPa.Specially,the active oxidation led to the corrosion of the SiC coating and interruption of the SiO_(2) growth.The transition borders of active/passive oxidations were thus defined with respect to oxidation temperature and partial pressure of atomic O in the high-enthalpy and high-speed plasmas.In the transition and passive domains,the SiC dissipation was negligible.By multiple dynamic oxidations of C_(f)/SiC in the domains,the SiO_(2) thickness was not monotonously increased due to the competing mechanisms of passive oxidation of SiC and dissipation of SiO_(2).In addition,the mechanical properties of the SiC coating/matrix and the C_(f)/SiC were maintained after long-term dynamic oxidations,which suggested an excellent thermal stability of C_(f)/SiC serving in thermal protection systems(TPSs)of reusable hypersonic vehicles. 展开更多
关键词 thermal protection system(TPS) ceramic matrix composite oxidation mechanism plasma wind tunnel mechanical property
原文传递
Influence of MnO_(x)deposition on TiO_(2)nanotube arrays for electrooxidation
10
作者 Kaihang Zhang Yuanzheng Zhang +6 位作者 Su Liu Xin Tong Junfeng Niu Dong Wang Junchen Yan Zhaoyang Xiong John Crittenden 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期612-618,共7页
TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its el... TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs. 展开更多
关键词 TiO_(2)nanotube arrays oxidation mechanism Energy efficiency assessment MnO_(x)band structure Electrochemical advanced oxidation processes
下载PDF
Lipid oxidation in food science and nutritional health: A comprehensive review
11
作者 Dan Wang Huaming Xiao +2 位作者 Xin Lyu Hong Chen Fang Wei 《Oil Crop Science》 CSCD 2023年第1期35-44,共10页
Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of ce... Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of cells.Nevertheless, lipids are easily oxidized by different ways, such as thermal oxidation and air oxidation. Lipidoxidation has adverse effects on food quality and human health. Therefore, efforts should be made to reduce lipidoxidation and improve its stability. This review focuses on important knowledge about lipid oxidation, includingthe concept of lipids and lipid oxidation, the main pathways and mechanisms of lipid oxidation, factors affectinglipid oxidation, strategies to improve the stability of lipid oxidation, and the recent research progress of lipidoxidation in food science and nutritional health. 展开更多
关键词 Lipid oxidation oxidation mechanism Oxidative stability Food science ANTIOXIDANT
下载PDF
Synthesis mechanism of heterovalent Sn_2O_3 nanosheets in oxidation annealing process
12
作者 赵俊华 谭瑞琴 +6 位作者 杨晔 许炜 李佳 沈文峰 吾国强 杨旭峰 宋伟杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期178-182,共5页
Heterovalent Sn2O3 nanosheets were fabricated via an oxidation annealing process and the formation mechanism was investigated. The temperature required to complete the phase transformation from Sn3O4 to Sn2O3was consi... Heterovalent Sn2O3 nanosheets were fabricated via an oxidation annealing process and the formation mechanism was investigated. The temperature required to complete the phase transformation from Sn3O4 to Sn2O3was considered.Two contrasting experiments showed that both oxygen and heating were not necessary conditions for the phase transition.Sn2O3 was formed under an argon protective atmosphere by annealing and could also be obtained at room temperature by exposing Sn3O4 in atmosphere or dispersing in ethanol. The synthesis mechanism was proposed and discussed. This fundamental research is important for the technological applications of intermediate tin oxide materials. 展开更多
关键词 intermediate tin oxides nanosheets metastable phase synthesis mechanism
下载PDF
Studies of Catalysis in Partial Oxidation of Methane to Syngas(Ⅱ)──Chemisorbed Species,Energetics and Mechanism
13
作者 CHEN Ping ZHANG Hong-bin LIN Guo-dong andTSAI Khi-rui(Department of Chemistry &State Key Laboratory for Physical Chemistyry of the Solid Surface ,Xiamen University ,Xiamen 361005) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1995年第4期323-335,共13页
he characteristic study,by means of in-situ IR spectroscopy, of chemisorbed species on the Ni-catalysts for the partial oxidation of methane(POM)to syngas demonstrated the existence of CH_x(a)and H_xCO(a)adspecies on... he characteristic study,by means of in-situ IR spectroscopy, of chemisorbed species on the Ni-catalysts for the partial oxidation of methane(POM)to syngas demonstrated the existence of CH_x(a)and H_xCO(a)adspecies on the functioning Ni-catalysts, Several designed experimental investigations on the reactivities of methane with CO_2 and with O_2,respectively,over the Ni-catalysts, and of CO_2 with the prereduced Ni-catalyst,ats well as of the deposited carbon with CO_2 and with O_2,respectlvely,liave been carried out and the reLqults were unfavorable to the two-step mechanistic interpretation proposed for the POM reaction. By means of tlie BOC-MP Approach,energetics of a set of elementary reactions,which may be involved in the POM process,on the clean(111)surface of Ni,Fe,Cu and Pd, re- spectively,has been studied.The result;of the experiments and the calculation of the present work favor the direct catalytic dissociation-plus-surface oxidation-plus-further debdrogenation mechanism as the dominant pathway making major contribution to the POM reaction. 展开更多
关键词 Partial oxidation of methane Syngas Chemisorbed species Energetics. mechanism
下载PDF
In situ catalytic upgrading of heavy crude oil through low-temperature oxidation 被引量:7
14
作者 Hu Jia Peng-Gang Liu +3 位作者 Wan-Fen Pu Xian-Ping Ma Jie Zhang Lu Gan 《Petroleum Science》 SCIE CAS CSCD 2016年第3期476-488,共13页
The low-temperature catalytic oxidation of heavy crude oil(Xinjiang Oilfield,China) was studied using three types of catalysts including oil-soluble,watersoluble,and dispersed catalysts.According to primary screenin... The low-temperature catalytic oxidation of heavy crude oil(Xinjiang Oilfield,China) was studied using three types of catalysts including oil-soluble,watersoluble,and dispersed catalysts.According to primary screening,oil-soluble catalysts,copper naphthenate and manganese naphthenate,are more attractive,and were selected to further investigate their catalytic performance in in situ upgrading of heavy oil.The heavy oil compositions and molecular structures were characterized by column chromatography,elemental analysis,and Fourier transform infrared spectrometry before and after reaction.An Arrhenius kinetics model was introduced to calculate the rheological activation energy of heavy oil from the viscosity-temperature characteristics.Results show that the two oil-soluble catalysts can crack part of heavy components into light components,decrease the heteroatom content,and achieve the transition of reaction mode from oxygen addition to bond scission.The calculated rheological activation energy of heavy oil from the fitted Arrhenius model is consistent with physical properties of heavy oil(oil viscosity and contents of heavy fractions).It is found that the temperature,oil composition,and internal molecular structures are the main factors affecting its flow ability.Oil-soluble catalyst-assisted air injection or air huff-n-puff injection is a promising in situ catalytic upgrading method for improving heavy oil recovery. 展开更多
关键词 In situ catalytic oxidation Heavy oil Upgrading Low-temperature oxidation mechanism
下载PDF
Oxidation Kinetics of (111) Silicon Monocrystal and Morphology of Oxide Film in Dry Oxygen Atmosphere
15
作者 李文超 樊自拴 +1 位作者 孙贵如 秦福 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1989年第5期362-365,共4页
1. Introduction Thermal oxidation of silicon monocrystalis a very important process in fabricationof metal--oxide--semiconductor (MOS) devices.In recent years it has received great atten-tion. Various proposals for ox... 1. Introduction Thermal oxidation of silicon monocrystalis a very important process in fabricationof metal--oxide--semiconductor (MOS) devices.In recent years it has received great atten-tion. Various proposals for oxidation modeshave been made by different groups.Now most of the authors working in thisfield hold the view that the oxidation rateof silicon obeys a typical parabolic rule,that is, the oxidation reaction is controlledby diffusion. The experimental data inRef. can be taken and a kinetic curve 展开更多
关键词 oxidation mechanism silicon monocrystal oxide film morphology
下载PDF
Mechanism of Fume Suppression and Performance on Asphalt of Expanded Graphite for Pavement under High Temperature Condition 被引量:4
16
作者 黄刚 何兆益 +2 位作者 HUANG Yangcheng ZHOU Chao YUAN Xiaoya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1229-1236,共8页
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ... Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect. 展开更多
关键词 expanded graphite fume suppression mechanism adsorption insert oxidation composite modified asphalt of fume suppression performance
下载PDF
OXIDATION RESISTANCE AND MECHANICAL PROPERTIES OF Ti_3Al-Nb-Mo-Si ALLOYS 被引量:1
17
作者 SUN Yufeng CAO Chunxiao +1 位作者 CAO Jingxia YAN Minggao (Beijing Institute of Aeronautical Materials,Beijing,100095),P.R.China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期577-582,共6页
In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mecha... In the present paper,the development of Ti3Al-Nb-Mo-Si alloys for high oxidation resistance is reviewed.Beside of weight gain of alloys with different Nb and Si addition is tested,the evaluation of comprehensive mechanical properties has been taken,include the room-temperature and 700℃ tensile properties,thermal stability,creep rupture and fracture toughness of the alloys,It has shown that the oxidation resistance and mechanical properties were significantly affected by the variation of Nb and Si contents.The composition with the best balance of properties is Ti-24Al-13Nb-1.5Mo-0.5Si and Ti-24Al-15Nb-1.5Mo,which is mush higher than that of Super,α_2 alloy (Ti-25Al-10Nb-3V-1Mo). 展开更多
关键词 Ti_3Al alloy oxidation resistance mechanical properties
下载PDF
Mechanisms for Polarization Fatigue Behaviors of Perovskite Oxide Ferroelectric Thin Films 被引量:1
18
作者 LIU J M (Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China) 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期36-,共1页
关键词 THIN mechanisms for Polarization Fatigue Behaviors of Perovskite Oxide Ferroelectric Thin Films
下载PDF
Mechanism of Hg^0 oxidation in the presence of HCl over a commercial V_2O_5–WO_3/TiO_2 SCR catalyst 被引量:7
19
作者 Ruihui Liu Wenqing Xu +1 位作者 Li Tong Tingyu Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期76-83,共8页
Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the pres... Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg^0 oxidation efficiencies decreased slowly as the temperature increased from 200 to 400℃. Upon pretreatment with HCl and O2 at 350℃, the catalyst demonstrated higher catalytic activity for Hg^0 oxidation. Notably,the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg^0 were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg^0 over the commercial catalyst followed the Langmuir–Hinshelwood mechanism. Several characterization techniques, including Hg^0temperature-programmed desorption(Hg-TPD) and X-ray photoelectron spectroscopy(XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. 展开更多
关键词 Mercury Hydrogen chloride Vanadium-based catalyst oxidation mechanism
原文传递
Insight into the improvement mechanism of Co-Pi-modified hematite nanowire photoanodes for solar water oxidation
20
作者 Xu Zhou Chunyan Wang +2 位作者 Fulin Liu Chengyu He Shiming Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期3261-3263,共3页
The composite photoanodes composed by cobalt phosphate catalyst(Co-Pi) modified semiconductor have been widely used for solar water splitting,but the improvement mechanism has not been experimentally confirmed.Here we... The composite photoanodes composed by cobalt phosphate catalyst(Co-Pi) modified semiconductor have been widely used for solar water splitting,but the improvement mechanism has not been experimentally confirmed.Here we use transient photoelectrochemical measurements and impedance spectroscopy to investigate the effect of Co-Pi catalyst on hematite nanowire photoanode.It is found that under illumination the Co-Pi catalyst can efficiently promote the transfer of photo-generated holes to the Co-Pi layer by increasing the electrical conductivity of the composite structure under a low potential.The Co-Pi catalyst can recombine with photo-generated electrons to reduce the surface recombination efficiency of photo-generated holes and electrons under a high potential.These results provide important new understanding of the performance improvement mechanism for the Co-Pi-modified semiconductor nanowire composite photoanodes. 展开更多
关键词 Semiconductor nanowires Oxygen-evolving catalyst Composite structure Water oxidation mechanism
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部