期刊文献+
共找到2,043篇文章
< 1 2 103 >
每页显示 20 50 100
Ca and Sr co-doping induced oxygen vacancies in 3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts for boosting low-temperature oxidative coupling of methane
1
作者 Tongtong Wu Yuechang Wei +5 位作者 Jing Xiong Yitao Yang Zhenpeng Wang Dawei Han Zhen Zhao Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期331-344,共14页
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(... It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application. 展开更多
关键词 3DOM catalysts Ca ions Sr ions Low-temperature oxidative couplingof methane Oxygen vacancies O_(2)^(-) species
下载PDF
Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame
2
作者 Songling Guo Xun Tao +5 位作者 Fan Zhou Mengyan Yu Yufan Wu Yunfei Gao Lu Ding Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期106-116,共11页
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl... Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions. 展开更多
关键词 Acid gas methane Oxy-fuel combustion OXIDATION Chemical analysis Carbon sulfides
下载PDF
Interactions of Microplastics and Methane Seepage in the Deep-Sea Environment 被引量:1
3
作者 Jing-Chun Feng Zhifeng Yang +8 位作者 Wenliang Zhou Xingwei Feng Fuwen Wei Bo Li Chuanxin Ma Si Zhang Linlin Xia Yanpeng Cai Yi Wang 《Engineering》 SCIE EI CAS CSCD 2023年第10期159-167,共9页
Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated... Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates. 展开更多
关键词 Microplastics Anaerobic oxidation of methane Cold seeps Diversity index FRAGMENTATION Gas hydrates
下载PDF
Oxidative coupling of methane over LaAlO3 perovskite catalysts prepared by a co-precipitation method: Effect of co-precipitation pH value 被引量:5
4
作者 Yujin Sim Jihoon Yoo +1 位作者 Jeong-Myeong Ha Ji Chul Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期1-8,I0001,共9页
Oxidative coupling of methane(OCM) was conducted over LaAlO3X catalysts that were prepared by a coprecipitation method using different co-precipitation pH values(X = 6–10). The aim is to investigate the effect of p H... Oxidative coupling of methane(OCM) was conducted over LaAlO3X catalysts that were prepared by a coprecipitation method using different co-precipitation pH values(X = 6–10). The aim is to investigate the effect of p H values on the catalytic activity of La AlO3 catalysts in this reaction. The results showed that the co-precipitation pH value affected greatly on the formation of chemical species of precipitate precursors in the co-precipitation step, leading to different phases of the finally obtained LaAlO3 catalysts.When the co-precipitation pH value increased up to 8, the lanthanum-related phases such as La2 O3 and La(OH)3 were gradually formed as by-products, preventing the formation of LaAlO3 perovskite crystalline structure and facilitating the formation of oxygen vacancies on catalyst surface. However, at pH value of9 or higher, the lanthanum content in the precipitate precursor was increased greatly. Not LaAlO3 perovskite but lanthanum-related phases were developed as main phases, reducing their catalytic activities in this reaction. Among LaAlO3 catalysts, the one prepared at pH = 8 showed the highest C2 yield due to its well-developed oxygen vacancies and electrophilic lattice oxygen. Therefore, the co-precipitation pH value strongly affected the LaAlO3 catalyst activity in OCM reaction. A precious pH control should be required to prepare various perovskite catalysts for the OCM. 展开更多
关键词 LAALO3 PEROVSKITE oxidative coupling of methane CO-PRECIPITATION pH VALUE
下载PDF
Oxidative Coupling of Methane over Lithium Doped (Mn+W)/SiO_2 Catalysts 被引量:10
5
作者 A. Malekzadeh A. Khodadadi +1 位作者 A. K. Dalai M. Abedini 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期121-129,共9页
Modification and performance of Li induced silica phase transition of (Mn+W)/SiO2 catalyst, under reaction conditions of oxidative coupling of methane (OCM), have been investigated employing textural characteriza... Modification and performance of Li induced silica phase transition of (Mn+W)/SiO2 catalyst, under reaction conditions of oxidative coupling of methane (OCM), have been investigated employing textural characterizations and redox studies. Stability and precrystalline form of fresh Li induced silica phase transition catalyst depend on the Li loading. A catalyst, with high lithium loading, destabilizes on OCM stream. This destabilization is not due to Li evaporation at OCM reaction conditions, α-cristobalite is proposed to be an intermediate in the crystallization of amorphous silica into quartz in the Li-induced silica phase transition process. However, the type of crystalline structure was found to be unimportant with regard to the formation of a selective catalyst. Metal-metal interactions of Li-Mn, Li-W and Mn-W, which are affected during silica phase crystallization, are found to be critical parameters of the trimetallic catalyst and were studied by TPR. Role of lithium in Li doped (Mn+W)/SiO2 catalyst is described as a moderator of the Mn-W interaction by involving W in silica phase transition. These interactions help in the improvement of transition metal redox properties, especially that of Mn, in favor of OCM selectivity. 展开更多
关键词 oxidative coupling of methane silica phase transition LITHIUM intermetallic interaction redox properties
下载PDF
Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst:A simulation study using experimental kinetic model 被引量:8
6
作者 Nakisa Yaghobi Mir Hamid Reza Ghoreishy 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期8-16,共9页
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separat... The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio. 展开更多
关键词 oxidative coupling of methane SIMULATION KINETICS fixed bed catalytic reactor ETHYLENE
下载PDF
Screening of MgO- and CeO_2-Based Catalysts for Carbon Dioxide Oxidative Coupling of Methane to C_(2+) Hydrocarbons 被引量:5
7
作者 Istadi Nor Aishah Saidina Amin 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第1期23-35,共13页
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based so... The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively. 展开更多
关键词 catalyst screening carbon dioxide oxidative coupling methane ternary metal oxide binary metal oxide MGO CEO2 C2+ hydrocarbons
下载PDF
Kinetic studies of the oxidative coupling of methane over the Mn/Na_2WO_4/SiO_2 catalyst 被引量:5
8
作者 Seyed Mehdi Kamali Shahri Seyed Mehdi Alavi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期25-34,共10页
Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness im... Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness impregnation method. A 7-step heterogeneous reaction model of the oxidative coupling of methane to C2 hydrocarbons was conducted by co-feeding methane and oxygen at a total pressure of 1 bar over the catalyst. The kinetic measurements were carried out in a micro-catalytic fixed bed reactor. The kinetic data were obtained at the appropriate range of reaction conditions (4 kPa〈Po2 〈20 kPa, 20 kPa〈PcH4〈80 kPa, 800 ℃〈T〈900℃). The proposed reaction kinetic scheme consists of three primary and four consecutive reaction steps. The conversions of hydrocarbons and carbon oxides were evaluated by applying Langmuir-Hinshelwood type rate equations. Power-law rate equation was applied only for the water-gas shift reaction. In addition, the effects of operating conditions on the reaction rate were studied. The proposed kinetic model can predict the conversion of methane and oxygen as well as the yield of C2 hydrocarbons and carbon oxides with an average accuracy of ± 15%. 展开更多
关键词 kinetic model oxidative coupling of methane reaction rate
下载PDF
Oxidative coupling of methane over (Na_2WO_4+Mn or Ce)/SiO_2 catalysts:In situ measurement of electrical conductivity 被引量:3
9
作者 Zeinab Gholipour Azim Malekzadeh +2 位作者 Reza Hatami Yadollah Mortazavi Abasali Khodadadi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第1期35-42,共8页
The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at... The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800℃, atmospheric pressure and under GHSV = 13200 ml·gCat^-1·h^-1.Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective catalysts for OCM reaction. Ceria with high oxygen storage capacity is selected as a proper oxygen activator, providing a higher concentration of the oxy-anion species which is suitable for OCM reaction and compared with manganese oxide. Electrical conductivity of the catalysts was measured in OCM reaction under oxidizing atmosphere, i.e. in the absence of methane. It was found that the trimetallic catalysts, i.e. the catalysts having sodium, tungsten and Mn or Ce species, exhibited similar crystalline structures and morphologies, which lead to suitable bulk properties for the formation of an active and selective catalyst. However, tungsten had significant effect on the texture and redox properties of the catalysts. It was also shown that the crystalline structure of the bimetallic (Na+Mn or Ce)/SiO2 samples was quite different. This reveals that the metal oxides have significant effect on the extent of crystallization, taking place in the course of interaction of sodium with silica support. Similar conductivities and catalytic performances of (Na2WO4+Mn or Ce)/SiO2 catalysts propose that the ability of Na2WO4/SiO2 for utilizing oxy-anions formed in presence of different metal oxides is limited. 展开更多
关键词 oxidative coupling of methane (OCM) CONDUCTIVITY manganese oxide CERIA TPR
下载PDF
Studies on the structure and catalytic performance of S and P promoted Na-W-Mn-Zr/SiO_2 catalyst for oxidative coupling of methane 被引量:5
10
作者 Wen Zheng, Dangguo Cheng, Ning Zhu, Fengqiu Chen, Xiaoli Zhan Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China 《Journal of Natural Gas Chemistry》 CSCD 2010年第1期15-20,共6页
A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on t... A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on the Na-W-Mn-Zr/SiO2 catalyst. The catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). From the characterization results, it is found that the addition of S and P to the Na-W-Mn-ZffSiO2 catalyst helps the formation of active phases, such as α-cristobalite, Na2WO4, ZrO2, and Na2SO4. Moreover, the addition of S and P increases the concentration of surface-active oxygen species by improving the migration of active components from the bulk phase to the surface of the catalyst. According to the activity test, impressive methane conversion and C2 hydrocarbons yield were obtained at a low temperature of 1023 K over the six-component Na-W-Mn-Zr-S-P/SiO2 catalyst, which contained 2 wt% S and 0.4 wt% P simultaneously. The deactivation of Na-W-Mn-Zr-S-P/SiO2 was due to the loss of surface active components. 展开更多
关键词 oxidative coupling of methane Na-W-Mn-Zr/SiO2 S P
下载PDF
Product oriented oxidative bromination of methane over Rh/SiO_2 catalysts 被引量:4
11
作者 Zhen Liu Wensheng Li Xiaoping Zhou 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期522-529,共8页
Rh/SiO2 was prepared for the oxidative bromination of methane. The catalyst was prepared by calcination at different temperatures and for different times to obtain catalysts with different specific surface areas for t... Rh/SiO2 was prepared for the oxidative bromination of methane. The catalyst was prepared by calcination at different temperatures and for different times to obtain catalysts with different specific surface areas for the purposes of producing either CH3Br or CH3Br and CO. It was found that the catalyst having a low specific surface area (calcined at relatively high temperature) favors the selective oxidation of methane to prepare CH3Br, while the catalyst having a high specific surface area favors the deeper partial oxidation of methane, which is good for CH3Br and CO preparation, The 650 h on stream life-time test revealed that the catalytic performance of the 0.4Rh/SiO2-900-10 catalyst was excellent. Both methane conversion and CH3Br selectivity kept increasing trends during the life-time test. No matter how serious was the Rh leaching during the reaction, the 0.4Rh/SiO2-900-10 catalyst did not deactivate at all. 展开更多
关键词 oxidative bromination of methane methyl bromide Rh/SiO2
下载PDF
Ce-promoted Mn/Na_2 WO_4/SiO_2 catalyst for oxidative coupling of methane at atmospheric pressure 被引量:5
12
作者 Seyed Mehdi Kamali Shahri Ali Nakhaei Pour 《Journal of Natural Gas Chemistry》 CAS CSCD 2010年第1期47-53,共7页
A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressu... A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressure in a micro-quartz-tube reactor. The catalysts were characterized by X-ray diffraction (XRD), temperature program reduction (TPR) and BET surface area. Ce promoter increased surface area and Na2WO4 species dispersion, which enriched the amount of the surface species. In addition, Ce promoter increased the Na/W species reduction, but the reduction peak shifted to higher temperature. Stability test of 5wt%Ce catalyst indicated suitable performance and stability. The selectivity and yield of C^2+ hydrocarbons after 50 h operation reached 65.5% and 19.6%, respectively, at 840 ℃ over 5wt%Ce-2wt%Mn5wt%Na2WO4/SiO2 catalyst. 展开更多
关键词 oxidative coupling of methane CeO2 promoter Mn/Na2WO4/SiO2
下载PDF
Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane 被引量:5
13
作者 V.H.Rane S.T.Chaudhari V.R.Choudhary 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期313-320,共8页
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat... Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process. 展开更多
关键词 oxidative coupling of methane alkali metal doped CaO catalysts basicity/base strength distribution catalytic activity/selectivity
下载PDF
Scale up and stability test for oxidative coupling of methane over Na_2WO_4-Mn/SiO_2 catalyst in a 200 ml fixed-bed reactor 被引量:3
14
作者 Haitao Liu Xiaolai Wang +3 位作者 Dexin Yang Runxiong Gao Zhonglai Wang Jian Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期59-63,共5页
The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction ... The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction conditions were investigated in detail. The results showed that, with increasing reaction temperature, the gas-phase reaction was enhanced and a significant amount of methane was converted into COx; with the CH4/O2 molar ratio of 5, the highest C2 (ethylene and ethane) yield of 25% was achieved; the presence of steam (as diluent) had a positive effect on the C2 selectivity and yield. Under lower methane gaseous hourly space velocity (GHSV), higher selectivity and yield of C2 were obtained as the result of the decrease of released heat energy. In 100 h reaction time, the C2 selectivity of 66%-61% and C2 yield of 24.2%-25.4% were achieved by a single pass without any significant loss in catalytic performance. 展开更多
关键词 scale up oxidative coupling of methane W-Mn/SiO2 200 ml fixed-bed reactor
下载PDF
Kinetic simulation of oxidative coupling of methane over perovskite catalyst by genetic algorithm:Mechanistic aspects 被引量:3
15
作者 Nastaran Razmi Farooji Ali Vatani Shahrnaz Mokhtari 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第4期385-392,共8页
The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxyge... The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxygen ratios of 2 to 4.5 and gas hourly space velocity (GHSV) of 100 min^-1.Correlation of the kinetic data has been performed with the proposed mechanisms.The selected equations have been regressed with experimental data accompanied by genetic algorithm (GA) in order to obtain optimized parameters.After investigation the Langmuir-Hinshelwood mechanism was selected as the best mechanism,and Arrhenius and adsorption parameters of this model were obtained by linear regression.In this research the Marquardt algorithm was also used and its results were compared with those of genetic algorithm.It should be noted that the Marquardt algorithm is sensitive to the selection of initial values and there is possibility to trap in a local minimum. 展开更多
关键词 oxidative coupling of methane (OCM) reaction mechanism kinetic model surface coverage genetic algorithm (GA)
下载PDF
Reaction Chemistry of W-Mn/SiO2 Catalyst for the Oxidative Coupling of Methane 被引量:2
16
作者 Shuben LiState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2003年第1期1-9,共9页
Reaction chemistry of the OCM reaction on W-Mn/SiO_2 catalyst has beenreviewed in this account. Initial activity and selectivity, stability in a long-term reaction,reaction at elevated pressures and a modelling test i... Reaction chemistry of the OCM reaction on W-Mn/SiO_2 catalyst has beenreviewed in this account. Initial activity and selectivity, stability in a long-term reaction,reaction at elevated pressures and a modelling test in a stainless-steel fluidized-bed reactor showthat W-Mn/SiO_2 has promising performance for the development of an OCM process that directlyproduces ethylene from natural gas. A study on surface catalytic reaction kinetics and used catalyststructure characterization revealed a possible reason why C_2 and CO_x selectivity changed duringthe long-term reaction. Further improvement of the catalyst composition and preparation methodshould be a future direction of study on OCM reaction over W-Mn/SiO_2 catalyst. 展开更多
关键词 W-Mn/SiO_2 catalyst oxidative coupling of methane elevated pressure methane
下载PDF
Comparative study of kinetic modeling for the oxidative coupling of methane by genetic and marquardt algorithms 被引量:2
17
作者 Shahrnaz Mokhtari Ali Vatani Nastaran Razmi Farooji 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期293-299,共7页
Overall kinetic studies on the oxidative coupling of methane,OCM,have been conducted in a tubular fixed bed reactor,using perovskite titanate as the reaction catalyst.The appropriate operating conditions were found to... Overall kinetic studies on the oxidative coupling of methane,OCM,have been conducted in a tubular fixed bed reactor,using perovskite titanate as the reaction catalyst.The appropriate operating conditions were found to be:temperature 750-775 ℃,total feed flow rate of 160 ml/min,CH4 /O2 ratio of 2 and GHSV of 100·min-1 .Under these conditions,C 2 yield of 28% was achieved.Correlations of the kinetic data have been performed with lumped rate equations for C2 and COx formation as functions of temperature,O2 and CH4 partial pressures.Six models have been selected among the common lumped kinetic models.The selected models have been regressed with the experimental data which were obtained from the Catatest system by genetic algorithm in order to obtain optimized parameters.The kinetic coefficients in the overall reactions were optimized by different numerical optimization methods such as:the Levenberg-Marquardt and genetic algorithms and the results were compared with one another.It has been found that the Santamaria model is in good agreement with the experimental data.The Arrhenius parameters of this model have been obtained by linear regression.It should be noted that the Marquardt algorithm is sensitive to the first guesses and there is possibility to trap in the relative minimum. 展开更多
关键词 oxidative coupling of methane KINETICS PEROVSKITE genetic algorithm marquardt algorithm
下载PDF
Sr-doping effects on La_2O_3 catalyst for oxidative coupling of methane 被引量:6
18
作者 Linna Cong Yonghui Zhao +1 位作者 Shenggang Li Yuhan Sun 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第5期899-907,共9页
Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the clust... Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the cluster model.Eight Sr‐doped La2O3cluster models were built from pure La2O3clusters that were used previously to model the La2O3catalyst.These form two distinct categories,namely,those without a radical character(LaSrO2(OH),La2SrO4,La3SrO5(OH),and La5SrO8(OH))and those with a radical character(LaSrO3,La2SrO4(OH),La3SrO6,and La5SrO9).The potential‐energy surface for CH4activation to form a CH3radical at different Sr-O and La-O pair sites on these Sr‐doped La2O3clusters was calculated to study the Sr‐doping effect on the OCM catalytic activity.CH4physisorption and chemisorption energies,and activation barriers,and CH3desorption energies were predicted.Compared with the pure La2O3clusters,in general,the Sr‐doped La2O3clusters are thermodynamically and kinetically more reactive with CH4.For the Sr‐doped La2O3clusters without the radical character,the Sr-O pair site is more reactive with CH4than the La-O pair site,although a direct release of the CH3radical is also highly endothermic as in the case of the pure La2O3clusters.In contrast,for the Sr‐doped La2O3clusters with a radical character,the activation of CH4at the oxygen radical site and the release of the CH3radical are much easier.Thus,our calculations suggest that the Sr dopant prompts the OCM catalytic activity of the La2O3catalyst by providing a highly active oxygen‐radical site and by strengthening the basicity of the M-O pair site,which leads to lower CH4activation energies and lower CH3desorption energies. 展开更多
关键词 methane activation Methyl radical generation Cluster models Density functional theory Strontium doping Lanthanum oxide
下载PDF
Oxidative coupling of methane in a dual-bed reactor comprising of particle/cordierite monolithic catalysts 被引量:2
19
作者 Deng Pan Shengfu Ji Wenhua Wang Chengyue Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期600-604,共5页
A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM... A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated.The effects of the bed height and operation mode,as well as the reaction parameters such as reaction temperature,CH4/O2 ratio and flowrate of feed gas,on the catalytic performance were investigated.The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed.A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm.Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%,respectively,as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%,respectively,as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst in a single-bed reactor.The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably. 展开更多
关键词 oxidative coupling of methane dual-bed reactor monolithic catalysts
下载PDF
Oxidative reforming of methane for hydrogen and synthesis gas production:Thermodynamic equilibrium analysis 被引量:2
20
作者 Antonio C.D.Freitas Reginaldo Guirardello 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期571-580,共10页
A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to d... A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to determine the equilibrium compositions and equilibrium temperatures,respectively.Both cases were treated as optimization problems (non-linear programming formulation).The GAMS 23.1 software and the CONOPT2 solver were used in the resolution of the proposed problems.The hydrogen and syngas production were favored at high temperatures and low pressures,and thus the oxygen to methane molar ratio (O 2 /CH 4) was the dominant factor to control the composition of the product formed.For O 2 /CH 4 molar ratios higher than 0.5,the oxidative reforming of methane presented autothermal behavior in the case of either utilizing O 2 or air as oxidant agent,but oxidation reaction with air possessed the advantage of avoiding peak temperatures in the system,due to change in the heat capacity of the system caused by the addition of nitrogen.The calculated results were compared with previously published experimental and simulated data with a good agreement between them. 展开更多
关键词 thermodynamic analysis methane oxidative reforming Gibbs energy minimization entropy maximization hydrogen and syngas production
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部