Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In...Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In2O3:Sn (ITO) thin films have been widely used and investigated. In this study, ZAO and ITO thin films were irradiated by AO with different amounts of fluence. The as-deposited samples and irradiated ones were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall-effect measurement to investigate the dependence of the structure, morphology and electrical properties of ZAO or ITO on the amount of fluence of AO irradiation. It is noticed that AO has erosion effects on the surface of ZAO without evident influences upon its structure and conductive properties. Moreover, as the amount of AO fluence rises, the carrier concentration of ITO decreases causing the resistivity to increase by at most 21.7%.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we ex...Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.展开更多
High throughput experimental methods are known to accelerate the rate of research,development,and deployment of electronic materials.For example,thin films with lateral gradients in composition,thickness,or other para...High throughput experimental methods are known to accelerate the rate of research,development,and deployment of electronic materials.For example,thin films with lateral gradients in composition,thickness,or other parameters have been used alongside spatially-resolved characterization to assess how various physical factors affect the material properties under varying measurement conditions.Similarly,multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance.In this work,we apply these high throughput experimental methods to thin film transistors(TFTs),demonstrating combinatorial channel layer growth,device fabrication,and semi-automated characterization using sputtered oxide TFTs as a case study.We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library,such as channel thickness and length,channel cation compositions,and oxygen atmosphere during deposition.We also present a semi-automated method to measure the 44 devices fabricated on a 50 mm×50 mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time.Finally,we propose a fully automated characterization system for similar TFT libraries,which can be coupled with high throughput data analysis.These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.展开更多
Interface and surface physics is an important sub-discipline within condensed matter physics in recent decades. Novel concepts like oxide-electronic device are prompted, and their performance and lifetime are highly d...Interface and surface physics is an important sub-discipline within condensed matter physics in recent decades. Novel concepts like oxide-electronic device are prompted, and their performance and lifetime are highly dependent on the flatness and abruptness of the layer surfaces and interfaces. Reflection high-energy electron diffraction (RHEED), which is extremely sensitive to surface morphology, has proven to be a versatile technique for the growth study of oxide thin films. A differential pumping unit enables an implementation of RHEED to pulsed laser deposition (PLD) systems, ensuring an in situ monitoring of the film growth process in a conventional PLD working oxygen pressure up to 30 Pa. By optimizing the deposition conditions and analyzing the RHEED intensity oscillations, layer-by-layer growth mode can be attained. Thus atomic control of the film surface and unit-cell control of the film thickness become reality. This may lead to an advanced miniaturization in the oxide electronics, and more importantly the discovery of a range of emergent physical properties at the interfaces. Herein we will briefly introduce the principle of high-pressure RHEED and summarize our main results relevant to the effort toward this objective, including the growth and characterization of twinned Laz/3Caj/3MnO3 thin films and ReTiO〉6/2 (Re = La, Nd; ~5 = 0 - 1) AnBnO3n+2 structures, on YSZ-buffered 'Silicon on Insulator' and LaA103 substrates, respectively, as well as the study of the initial structure and growth dynamics of YBazCu307-6 thin films on SrTiO3 substrate. Presently we have realized in situ monitoring and growth mode control during oxide thin film deposition process.展开更多
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace...Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.展开更多
both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of th...both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of the Fe_2O_3 thin film were opti- mized to have maximum photoresponse.The effect of iodine doping on photoresponse of iron oxide was investigated.展开更多
We present a conceptually-new approach “dual manipulation effect” using the surfactant passivation and the electron carrier doping for mediating intrinsic ferromagnetism in Codoped ZnO dilute magnetic semiconductor ...We present a conceptually-new approach “dual manipulation effect” using the surfactant passivation and the electron carrier doping for mediating intrinsic ferromagnetism in Codoped ZnO dilute magnetic semiconductor (DMS) thin films. The first-principles calculations show that the surface passivation by hydrogen serves as a magnetism switch for the Co-O-Co magnetic coupling at the surface of the thin film, and thus can control the spin polarization of the doped Co atoms. Meanwhile, the electron carrier doping can further function as an effective layerlike ferromagnetism mediator for the underneath layer. The dual manipulation effect sheds light on the essential magnetism origin of n-type Co:ZnO DMS thin films, and may be used as an alternative strategy for enhancing the ferromagnetism in other n-type DMS oxides thin films.展开更多
In order to obtain high quality NiO thin film grown with the radio-frequency magnetron sputtering method, the influence of O/Ar ratio on the structure, band-gap, resistivity and optical transmittance of NiO thin films...In order to obtain high quality NiO thin film grown with the radio-frequency magnetron sputtering method, the influence of O/Ar ratio on the structure, band-gap, resistivity and optical transmittance of NiO thin films were studied. It was found that the obtained NiO thin film showed (111) preferred orientation and higher transparency in the visible region. With the increasing of O/ Ar ratio from 1:7 to 8: 2, the optical transmittance of NiO thin films decreased and the optical band- gap was between 3. 4 eV and 3. 7 eV, and the sheet resistivity decreased from 5. 4 ~ 107 Ω/ to 1.0 × 10^5 Ω/[]. Our study shows that the properties of NiO thin films can be adjusted in a wide range by adjusting the O/At ratio in the sputtering process.展开更多
By using surface effects(Auger electron spectroscopy,X-ray photoelectron spectroscopy,polar Kerr effect)and volume effects(magnetization,torque curve)the physical process of surface oxidation of rare earth-transition ...By using surface effects(Auger electron spectroscopy,X-ray photoelectron spectroscopy,polar Kerr effect)and volume effects(magnetization,torque curve)the physical process of surface oxidation of rare earth-transition metal amorphous magneto-optical thin films was studied in this paper.The rare earth elements oxidize preferentially and rich at the film surface,and the transition metals deplete in oxidation layer.Fe_2O_3 in the surface oxidation layer contributes to the planar magnetization,and thereby the anomalous peak appears near 180° on the torque curves and the amplitude of the peaks is related to the depth of surface oxidation layers.The iron bonds to oxygen easier than the cobolt.RE-Co magneto-optieal thin films have good properties of resistance to oxidation and humidity.展开更多
The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accur...The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types(directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields.展开更多
The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors(TFTs) are sign...The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors(TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends.展开更多
The lithium-and manganese-rich layered oxide(LMR)holds great promise as a cathode material for lithiumion battery(LIB)applications due to its high capacity,high voltage and low cost.Unfortunately,its poor initial Coul...The lithium-and manganese-rich layered oxide(LMR)holds great promise as a cathode material for lithiumion battery(LIB)applications due to its high capacity,high voltage and low cost.Unfortunately,its poor initial Coulombic efficiency(ICE)and unstable electrode/electrolyte interface with continuous growth of the solid electrolyte interphase leads to high impedance and large overpotential.These effects cause severe capacity loss and safety issues.In this work,we have developed a novel approach to fabricate a stable LMR cathode with a uniform thin layer of aluminum oxide(Al2O3)coated on the surface of the LMR particles.This synthesis approach uses the microemulsion method that is environment-friendly,cost-effective and can be easily scaled.Typically,an 8-nm layer of Al2O3 is shown to be effective in stabilizing the electrode/electrolyte interface(enhanced ICE to82.0%and moderate impedance increase over 200 cycles).Moreover,the phase transformation from layered to spinel is inhibited(96.3%average voltage retention)and thermal stability of the structure is significantly increased(heat release reduced by 72.4%).This study opens up a new avenue to address interface issues in LIB cathodes and prompts the practical applications of high capacity and voltage materials for high energy density batteries.展开更多
The effects of annealing rate and morphology of sol–gel derived zinc oxide (ZnO) thin films on the performance of inverted polymer solar cells (IPSCs) are investigated. ZnO films with different morphologies are p...The effects of annealing rate and morphology of sol–gel derived zinc oxide (ZnO) thin films on the performance of inverted polymer solar cells (IPSCs) are investigated. ZnO films with different morphologies are prepared at different annealing rates and used as the electron transport layers in IPSCs. The undulating morphologies of ZnO films fabricated at annealing rates of 10 ℃/min and 3 ℃/min each possess a rougher surface than that of the ZnO film fabricated at a fast annealing rate of 50 ℃/min. The ZnO films are characterized by atomic force microscopy (AFM), optical transmittance measurements, and simulation. The results indicate that the ZnO film formed at 3 ℃/min possesses a good-quality contact area with the active layer. Combined with a moderate light-scattering, the resulting device shows a 16% improvement in power conversion efficiency compared with that of the rapidly annealed ZnO film device.展开更多
The influence of substrate temperature on microstructure, electrical and optical properties of in situ- textured zinc oxide (ZnO) films fabricated by metal organic chemical vapor deposition (MOVCD) had been invest...The influence of substrate temperature on microstructure, electrical and optical properties of in situ- textured zinc oxide (ZnO) films fabricated by metal organic chemical vapor deposition (MOVCD) had been investigated. Results indicated that the substrate tempera- ture played a very important role on preparation of ZnO thin film. With the raising of temperature, firstly ZnO crystals were perpendicular to the substrate, then they were grown inclining toward the substrate, finally ZnO crystals grown in layers but not regular. Consequently, ZnO film surface morphology changed from smooth to a pyramid structure and then disappeared little by little. Moreover, it was also found in this study that ZnO film was characterized with high crystallinity, low resistivity (2.17 x 10 2) and high transmittance (〉 80%). These results suggested that ZnO thin film is suitable for front electrode of silicon thin film solar cell.展开更多
Thin films produced by electrostatic spray deposition (ESD) have nanometer-sized structures despite the initial sprayed droplets being typically a few tens of microns in diameter. The size and morphology of the resu...Thin films produced by electrostatic spray deposition (ESD) have nanometer-sized structures despite the initial sprayed droplets being typically a few tens of microns in diameter. The size and morphology of the resulting structures is not only affected by the solvent properties and drying kinetics, hut also by Coulomb fission owing to the high surface charge density that the droplets build up upon evaporation. In this work we modulate the charge density of the droplets by inducing ionic wind along the spray, and produce mesoscopic structures. Using WO3 as an example, we show that the technique provides a practical way to control the morphology of thin films produced by ESD.展开更多
基金National Natural Science Foundation of China (50471004)
文摘Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In2O3:Sn (ITO) thin films have been widely used and investigated. In this study, ZAO and ITO thin films were irradiated by AO with different amounts of fluence. The as-deposited samples and irradiated ones were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall-effect measurement to investigate the dependence of the structure, morphology and electrical properties of ZAO or ITO on the amount of fluence of AO irradiation. It is noticed that AO has erosion effects on the surface of ZAO without evident influences upon its structure and conductive properties. Moreover, as the amount of AO fluence rises, the carrier concentration of ITO decreases causing the resistivity to increase by at most 21.7%.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.
基金Supported by the National Natural Science Foundation of China under Grant No 61574048the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172
文摘Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.
基金the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308Funding provided by Laboratory Directed Research and Development (LDRD) program at NREL. Y. H+1 种基金support from Science and Technology Commission of Shanghai Municipality (Grant No. 16JC1400603)a grant from the National Natural Science Foundation of China (Grant No. 61471126)
文摘High throughput experimental methods are known to accelerate the rate of research,development,and deployment of electronic materials.For example,thin films with lateral gradients in composition,thickness,or other parameters have been used alongside spatially-resolved characterization to assess how various physical factors affect the material properties under varying measurement conditions.Similarly,multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance.In this work,we apply these high throughput experimental methods to thin film transistors(TFTs),demonstrating combinatorial channel layer growth,device fabrication,and semi-automated characterization using sputtered oxide TFTs as a case study.We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library,such as channel thickness and length,channel cation compositions,and oxygen atmosphere during deposition.We also present a semi-automated method to measure the 44 devices fabricated on a 50 mm×50 mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time.Finally,we propose a fully automated characterization system for similar TFT libraries,which can be coupled with high throughput data analysis.These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.10974229 and 11174342)
文摘Interface and surface physics is an important sub-discipline within condensed matter physics in recent decades. Novel concepts like oxide-electronic device are prompted, and their performance and lifetime are highly dependent on the flatness and abruptness of the layer surfaces and interfaces. Reflection high-energy electron diffraction (RHEED), which is extremely sensitive to surface morphology, has proven to be a versatile technique for the growth study of oxide thin films. A differential pumping unit enables an implementation of RHEED to pulsed laser deposition (PLD) systems, ensuring an in situ monitoring of the film growth process in a conventional PLD working oxygen pressure up to 30 Pa. By optimizing the deposition conditions and analyzing the RHEED intensity oscillations, layer-by-layer growth mode can be attained. Thus atomic control of the film surface and unit-cell control of the film thickness become reality. This may lead to an advanced miniaturization in the oxide electronics, and more importantly the discovery of a range of emergent physical properties at the interfaces. Herein we will briefly introduce the principle of high-pressure RHEED and summarize our main results relevant to the effort toward this objective, including the growth and characterization of twinned Laz/3Caj/3MnO3 thin films and ReTiO〉6/2 (Re = La, Nd; ~5 = 0 - 1) AnBnO3n+2 structures, on YSZ-buffered 'Silicon on Insulator' and LaA103 substrates, respectively, as well as the study of the initial structure and growth dynamics of YBazCu307-6 thin films on SrTiO3 substrate. Presently we have realized in situ monitoring and growth mode control during oxide thin film deposition process.
基金supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金the National Basic Research Program of China (Grant Nos. 2011CB201605 and 2011CB201606)the National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.
文摘both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of the Fe_2O_3 thin film were opti- mized to have maximum photoresponse.The effect of iodine doping on photoresponse of iron oxide was investigated.
基金supported by the Fundamental Research Funds for the Central Universities (No.WK2310000070)the National Natural Science Foundation of China (No.11875257, No.U1532265, and No.21603207)
文摘We present a conceptually-new approach “dual manipulation effect” using the surfactant passivation and the electron carrier doping for mediating intrinsic ferromagnetism in Codoped ZnO dilute magnetic semiconductor (DMS) thin films. The first-principles calculations show that the surface passivation by hydrogen serves as a magnetism switch for the Co-O-Co magnetic coupling at the surface of the thin film, and thus can control the spin polarization of the doped Co atoms. Meanwhile, the electron carrier doping can further function as an effective layerlike ferromagnetism mediator for the underneath layer. The dual manipulation effect sheds light on the essential magnetism origin of n-type Co:ZnO DMS thin films, and may be used as an alternative strategy for enhancing the ferromagnetism in other n-type DMS oxides thin films.
基金Supported by the National Natural Science Foundation of China(11004016)
文摘In order to obtain high quality NiO thin film grown with the radio-frequency magnetron sputtering method, the influence of O/Ar ratio on the structure, band-gap, resistivity and optical transmittance of NiO thin films were studied. It was found that the obtained NiO thin film showed (111) preferred orientation and higher transparency in the visible region. With the increasing of O/ Ar ratio from 1:7 to 8: 2, the optical transmittance of NiO thin films decreased and the optical band- gap was between 3. 4 eV and 3. 7 eV, and the sheet resistivity decreased from 5. 4 ~ 107 Ω/ to 1.0 × 10^5 Ω/[]. Our study shows that the properties of NiO thin films can be adjusted in a wide range by adjusting the O/At ratio in the sputtering process.
文摘By using surface effects(Auger electron spectroscopy,X-ray photoelectron spectroscopy,polar Kerr effect)and volume effects(magnetization,torque curve)the physical process of surface oxidation of rare earth-transition metal amorphous magneto-optical thin films was studied in this paper.The rare earth elements oxidize preferentially and rich at the film surface,and the transition metals deplete in oxidation layer.Fe_2O_3 in the surface oxidation layer contributes to the planar magnetization,and thereby the anomalous peak appears near 180° on the torque curves and the amplitude of the peaks is related to the depth of surface oxidation layers.The iron bonds to oxygen easier than the cobolt.RE-Co magneto-optieal thin films have good properties of resistance to oxidation and humidity.
基金supported by the National Research Foundation of Korea(NRF)(No.NRF-2017RID1A1B03034035)the Ministry of Trade,Industry&Energy(No.#10051403)the Korea Semiconductor Research Consortium
文摘The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types(directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields.
基金supported in part by the National Science Foundation for Distinguished Young Scholars of China(No.61425020)in part by the National Natural Science Foundation of China(No.11674162)
文摘The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors(TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends.
基金supported by the National Natural Science Foundation of China(U1564205)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality(IDHT20180508)。
文摘The lithium-and manganese-rich layered oxide(LMR)holds great promise as a cathode material for lithiumion battery(LIB)applications due to its high capacity,high voltage and low cost.Unfortunately,its poor initial Coulombic efficiency(ICE)and unstable electrode/electrolyte interface with continuous growth of the solid electrolyte interphase leads to high impedance and large overpotential.These effects cause severe capacity loss and safety issues.In this work,we have developed a novel approach to fabricate a stable LMR cathode with a uniform thin layer of aluminum oxide(Al2O3)coated on the surface of the LMR particles.This synthesis approach uses the microemulsion method that is environment-friendly,cost-effective and can be easily scaled.Typically,an 8-nm layer of Al2O3 is shown to be effective in stabilizing the electrode/electrolyte interface(enhanced ICE to82.0%and moderate impedance increase over 200 cycles).Moreover,the phase transformation from layered to spinel is inhibited(96.3%average voltage retention)and thermal stability of the structure is significantly increased(heat release reduced by 72.4%).This study opens up a new avenue to address interface issues in LIB cathodes and prompts the practical applications of high capacity and voltage materials for high energy density batteries.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00705,2011CBA00706,and 2011CBA00707)the National Natural Science Foundation of China(Grant No.61377031)
文摘The effects of annealing rate and morphology of sol–gel derived zinc oxide (ZnO) thin films on the performance of inverted polymer solar cells (IPSCs) are investigated. ZnO films with different morphologies are prepared at different annealing rates and used as the electron transport layers in IPSCs. The undulating morphologies of ZnO films fabricated at annealing rates of 10 ℃/min and 3 ℃/min each possess a rougher surface than that of the ZnO film fabricated at a fast annealing rate of 50 ℃/min. The ZnO films are characterized by atomic force microscopy (AFM), optical transmittance measurements, and simulation. The results indicate that the ZnO film formed at 3 ℃/min possesses a good-quality contact area with the active layer. Combined with a moderate light-scattering, the resulting device shows a 16% improvement in power conversion efficiency compared with that of the rapidly annealed ZnO film device.
文摘The influence of substrate temperature on microstructure, electrical and optical properties of in situ- textured zinc oxide (ZnO) films fabricated by metal organic chemical vapor deposition (MOVCD) had been investigated. Results indicated that the substrate tempera- ture played a very important role on preparation of ZnO thin film. With the raising of temperature, firstly ZnO crystals were perpendicular to the substrate, then they were grown inclining toward the substrate, finally ZnO crystals grown in layers but not regular. Consequently, ZnO film surface morphology changed from smooth to a pyramid structure and then disappeared little by little. Moreover, it was also found in this study that ZnO film was characterized with high crystallinity, low resistivity (2.17 x 10 2) and high transmittance (〉 80%). These results suggested that ZnO thin film is suitable for front electrode of silicon thin film solar cell.
文摘Thin films produced by electrostatic spray deposition (ESD) have nanometer-sized structures despite the initial sprayed droplets being typically a few tens of microns in diameter. The size and morphology of the resulting structures is not only affected by the solvent properties and drying kinetics, hut also by Coulomb fission owing to the high surface charge density that the droplets build up upon evaporation. In this work we modulate the charge density of the droplets by inducing ionic wind along the spray, and produce mesoscopic structures. Using WO3 as an example, we show that the technique provides a practical way to control the morphology of thin films produced by ESD.