To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malon...To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.展开更多
Water culture experiment was conducted to study the effects of selenium(Se) on glutathione peroxidase(GSH-Px) activity,reduced glutathione(GSH) concentration and the accumulation of malonaldehyde(MDA),the product of l...Water culture experiment was conducted to study the effects of selenium(Se) on glutathione peroxidase(GSH-Px) activity,reduced glutathione(GSH) concentration and the accumulation of malonaldehyde(MDA),the product of lipid peroxidation in rice seedling,as well as the effect of se on oxidizing ability of roots under ferrous stress.Results showed that appropriate amount of se significantly increased GSH-Px activity in rice leaves,F=5.5 *,enhanced the amount of GSH and oxidizing ability of roots and reduced the concentration of MDA,F=4.9 *.Compared with Se0+Fe treatment,Se treatments increased the dry matter weight of rice seedling from 10.06% to 10.43%,F=4.09 *.展开更多
According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and...According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.展开更多
BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is prov...BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity. OBJECTIVE : To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats. DESIGN : A randomized controlled animal experiment. SETTING : Department of Physiology, Xinxiang Medical College MATERIALS: Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant. METHODS : The experiment was carded out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds after alternation, pulsating electric current presented in the base of unsafe area to stimulate rat's feet to run to the safe area. The lighting lasted for 15 seconds as one test. Running from unsafe area to safe area at one time in 10 seconds was justified as successful. Such test was repeated for 10 times for each rat and the successful frequency was recorded. The qualified standard of maze test was that the rat ardved in the safe area g times during 10 experiments. The number of trainings for the qualified standard was used to represent the result of spatial learning. ③ Determination of the content of nNOS in brain tissue: After the Y-maze test, the rats were anaesthetized, and blood was let from the incision on right auricle, transcardially perfused via the left ventricle with about 200 mL saline, then fixed by perfusion of 40 g/L paraformaldehyde. Hippocampal CA1 region, corpus striatum and cerebellum were taken to prepare serial freezing coronal sections. The nNOS contents in the brain regions were determined with the immunohistochemical methods to reflect the changes of nitdc oxide in brain tissue. MAIN OUTCOME MEASURES : The changes of learning and memory ability and the changes of the nNOS contents in the brain tissue of rats with acute alcoholism were observed. RESULTS : One rat in the experimental group was excluded due to its slow reaction to electdc stimulation in the Y-maze test, and the other 17 rats were involved in the analysis of results. ① The training times to reach qualifying standards of Y-maze in the expedmental group was more than that in the control group [(34.33 ±13.04), (27.50±8.79) times, P〈 0.05]. ② Forms and numbers of nNOS positive neurons in brain tissue: It could be observed under light microscope that in the hippocampal CA1 region, there were fewer nNOS positive neurons, which were lightly stained, and the processes were not clear enough; But the numbers of the positive neurons which were deeply stained as huffy were obviously increased in the experimental group, the cell body and cyloplasm of process were evenly stained, but the nucleus was not stained. The nNOS positive neurons in corpus stdatum had similar forms and size in the experimental group and control group. The form of the nNOS positive neurons in cerebellum were similar between the two groups. The numbers of nNOS positive neurons in hippocampal CA1 region and corpus striatum in the expedmental group [(18.22±7.47), (11.38±5.00) cells/high power field] were obviously higher than those in the control group [(10.15±4.24), (6.15±3.69) cells/high power field. The number of nNOS positive neurons in cerebellum had no significant difference between the two groups [(49.56±18.84), (44.43±15.42) cells/high power field, P〉 0.05]. CONCLUSION : Acute alcoholism may impair learning and memory ability, and nitric oxide may be involved in mediating the neurotoxic role of ethanol.展开更多
A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also...A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also have an excellent ability to resist oxidation of the 9Ni steel. Compared to bare specimen, the depths of the entanglement of the coated 9Ni specimen could be successfully reduced by 74.1% and the oxidation loss be decreased by 62.3% by heating at 1 250 ℃ for 60 min. In addition, the coated specimen indicates no trace of oxide pegs. It proves that the coating has outstanding improvement to internal oxidation resistance. Some characterization methods such as metalloscopy, XRD, XPS, SEM and EDX have been used to reveal a possible protective mechanism. The result shows that the coating layer reacts with the iron oxide to form Mg Fe2O4 on the surface of the coated specimen, which could provide a smaller diffusion coefficient rate of Fe ion. The coating with a low cost and easy implementation is promisingly applicable in the slab-reheating process of the 9Ni steel.展开更多
Oxygen consumption is an important index of coal oxidation.In order to explore the coal-oxygen reaction,we developed an experimental system of coal spontaneous combustion and tested oxygen consumption of differently r...Oxygen consumption is an important index of coal oxidation.In order to explore the coal-oxygen reaction,we developed an experimental system of coal spontaneous combustion and tested oxygen consumption of differently ranked coals at programmed temperatures.The size of coal samples ranged from 0.18~0.42 mm and the system heat-rate was 0.8℃/min.The results show that, for high ranked coals,oxygen consumption rises with coal temperature as a piecewise non-linear process.The critical coal temperature is about 50℃.Below this temperature,oxygen consumption decreases with rising coal temperatures and reached a minimum at 50℃,approximately.Subsequently,it begins to increase and the rate of growth clearly increased with temperature.For low ranked coals,this characteristic is inconspicuous or even non-existent.The difference in oxygen consumption at the same temperatures varies for differently ranked coals.The results show the difference in oxygen consumption of the coals tested in our study reached 78.6%at 100℃.Based on the theory of coal-oxygen reaction,these phenomena were analyzed from the point of view of physical and chemical characteristics,as well as the appearance of the coal-oxygen complex.From theoretical analyses and our experiments,we conclude that the oxygen consumption at programmed temperatures reflects the oxidation ability of coals perfectly.展开更多
文摘To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.
文摘Water culture experiment was conducted to study the effects of selenium(Se) on glutathione peroxidase(GSH-Px) activity,reduced glutathione(GSH) concentration and the accumulation of malonaldehyde(MDA),the product of lipid peroxidation in rice seedling,as well as the effect of se on oxidizing ability of roots under ferrous stress.Results showed that appropriate amount of se significantly increased GSH-Px activity in rice leaves,F=5.5 *,enhanced the amount of GSH and oxidizing ability of roots and reduced the concentration of MDA,F=4.9 *.Compared with Se0+Fe treatment,Se treatments increased the dry matter weight of rice seedling from 10.06% to 10.43%,F=4.09 *.
基金The authors thank for the instrUction of Prof. Jian Zhang of the University of Science and Technology Beliing and the financia
文摘According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.
基金the Natural Sci-ence Foundation of HenanProvince, No. 984021100 agrant from Key Subject Fund ofXinxiang Medical College
文摘BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity. OBJECTIVE : To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats. DESIGN : A randomized controlled animal experiment. SETTING : Department of Physiology, Xinxiang Medical College MATERIALS: Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant. METHODS : The experiment was carded out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds after alternation, pulsating electric current presented in the base of unsafe area to stimulate rat's feet to run to the safe area. The lighting lasted for 15 seconds as one test. Running from unsafe area to safe area at one time in 10 seconds was justified as successful. Such test was repeated for 10 times for each rat and the successful frequency was recorded. The qualified standard of maze test was that the rat ardved in the safe area g times during 10 experiments. The number of trainings for the qualified standard was used to represent the result of spatial learning. ③ Determination of the content of nNOS in brain tissue: After the Y-maze test, the rats were anaesthetized, and blood was let from the incision on right auricle, transcardially perfused via the left ventricle with about 200 mL saline, then fixed by perfusion of 40 g/L paraformaldehyde. Hippocampal CA1 region, corpus striatum and cerebellum were taken to prepare serial freezing coronal sections. The nNOS contents in the brain regions were determined with the immunohistochemical methods to reflect the changes of nitdc oxide in brain tissue. MAIN OUTCOME MEASURES : The changes of learning and memory ability and the changes of the nNOS contents in the brain tissue of rats with acute alcoholism were observed. RESULTS : One rat in the experimental group was excluded due to its slow reaction to electdc stimulation in the Y-maze test, and the other 17 rats were involved in the analysis of results. ① The training times to reach qualifying standards of Y-maze in the expedmental group was more than that in the control group [(34.33 ±13.04), (27.50±8.79) times, P〈 0.05]. ② Forms and numbers of nNOS positive neurons in brain tissue: It could be observed under light microscope that in the hippocampal CA1 region, there were fewer nNOS positive neurons, which were lightly stained, and the processes were not clear enough; But the numbers of the positive neurons which were deeply stained as huffy were obviously increased in the experimental group, the cell body and cyloplasm of process were evenly stained, but the nucleus was not stained. The nNOS positive neurons in corpus stdatum had similar forms and size in the experimental group and control group. The form of the nNOS positive neurons in cerebellum were similar between the two groups. The numbers of nNOS positive neurons in hippocampal CA1 region and corpus striatum in the expedmental group [(18.22±7.47), (11.38±5.00) cells/high power field] were obviously higher than those in the control group [(10.15±4.24), (6.15±3.69) cells/high power field. The number of nNOS positive neurons in cerebellum had no significant difference between the two groups [(49.56±18.84), (44.43±15.42) cells/high power field, P〉 0.05]. CONCLUSION : Acute alcoholism may impair learning and memory ability, and nitric oxide may be involved in mediating the neurotoxic role of ethanol.
基金Funded by the Key Projects in the National Science &Technology Pillar Program in the Twelfth Five-year Plan Period(No.2012BAB08B04)the National Natural Science Foundation of China(No.51202249)
文摘A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also have an excellent ability to resist oxidation of the 9Ni steel. Compared to bare specimen, the depths of the entanglement of the coated 9Ni specimen could be successfully reduced by 74.1% and the oxidation loss be decreased by 62.3% by heating at 1 250 ℃ for 60 min. In addition, the coated specimen indicates no trace of oxide pegs. It proves that the coating has outstanding improvement to internal oxidation resistance. Some characterization methods such as metalloscopy, XRD, XPS, SEM and EDX have been used to reveal a possible protective mechanism. The result shows that the coating layer reacts with the iron oxide to form Mg Fe2O4 on the surface of the coated specimen, which could provide a smaller diffusion coefficient rate of Fe ion. The coating with a low cost and easy implementation is promisingly applicable in the slab-reheating process of the 9Ni steel.
基金Financial support for this research from the National Natural Science Foundation of China(Nos. 50674088 and 50927403)
文摘Oxygen consumption is an important index of coal oxidation.In order to explore the coal-oxygen reaction,we developed an experimental system of coal spontaneous combustion and tested oxygen consumption of differently ranked coals at programmed temperatures.The size of coal samples ranged from 0.18~0.42 mm and the system heat-rate was 0.8℃/min.The results show that, for high ranked coals,oxygen consumption rises with coal temperature as a piecewise non-linear process.The critical coal temperature is about 50℃.Below this temperature,oxygen consumption decreases with rising coal temperatures and reached a minimum at 50℃,approximately.Subsequently,it begins to increase and the rate of growth clearly increased with temperature.For low ranked coals,this characteristic is inconspicuous or even non-existent.The difference in oxygen consumption at the same temperatures varies for differently ranked coals.The results show the difference in oxygen consumption of the coals tested in our study reached 78.6%at 100℃.Based on the theory of coal-oxygen reaction,these phenomena were analyzed from the point of view of physical and chemical characteristics,as well as the appearance of the coal-oxygen complex.From theoretical analyses and our experiments,we conclude that the oxygen consumption at programmed temperatures reflects the oxidation ability of coals perfectly.