期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Band Engineering and Morphology Control of Oxygen‑Incorporated Graphitic Carbon Nitride Porous Nanosheets for Highly Efficient Photocatalytic Hydrogen Evolution 被引量:6
1
作者 Yunyan Wu Pan Xiong +7 位作者 Jianchun Wu Zengliang Huang Jingwen Sun Qinqin Liu Xiaonong Cheng Juan Yang Junwu Zhu Yazhou Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期95-106,共12页
Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation effici... Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts. 展开更多
关键词 Graphitic carbon nitride nanosheet Hollow morphology oxygen incorporating Multiple thermal treatment Photocatalytic hydrogen evolution
下载PDF
LSM-YSZ nano-composite cathode with YSZ interlayer for solid oxide fuel cells
2
作者 Zhongbo Liu Zhe Zhao +4 位作者 Lei Shang Dingrong Ou Daan Cui Baofeng Tu Mojie Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期510-514,共5页
Low temperature prepared(La;Sr;);MnO;-δ-Y;Zr;O;(LSM-YSZ) nano-composite cathode has high three-phase boundary(TPB) density and shows higher oxygen reduction reaction(ORR) activity than traditional LSM-YSZ catho... Low temperature prepared(La;Sr;);MnO;-δ-Y;Zr;O;(LSM-YSZ) nano-composite cathode has high three-phase boundary(TPB) density and shows higher oxygen reduction reaction(ORR) activity than traditional LSM-YSZ cathode at reduced temperatures. But the weak connection between cathode and electrolyte due to low sintering temperature restrains the performance of LSM-YSZ nano-composite cathode. A YSZ interlayer, consisted of nanoparticles smaller than 10 nm, is introduced by spinning coating hydrolyzed YSZ sol solution on electrolyte and sintering at 800 °C. The thickness of the interlayer is about 150 nm. The YSZ interlayer intimately adheres to the electrolyte and shows obvious agglomeration with LSM-YSZ nano-composite cathode. The power densities of the cell with interlayer are 0.83, 0.46 and 0.21 W/cm;under 0.7 V at 800, 700 and 600 °C, respectively, which are 36%, 48% and 50% improved than that of original cell. The interlayer introduction slightly increases the ohmic resistance but significantly decreases the polarization resistance. The depressed high frequency arcs of impedance spectra suggest that the oxygen incorporation kinetics are enhanced at the boundary of YSZ interlayer and LSM-YSZ nanocomposite cathode, contributing to improved electrochemical performance of the cell with interlayer. 展开更多
关键词 Solid oxide fuel cell LSM-YSZ cathode INTERLAYER Three-phase boundary oxygen incorporation
下载PDF
Deposition and doping of CdS/CdTe thin film solar cells 被引量:2
3
作者 Nima E.Gorji 《Journal of Semiconductors》 EI CAS CSCD 2015年第5期19-23,共5页
1% oxygen is incorporated into both CdS and CdTe layers through RF sputtering of CdS/CdTe thin film solar cells. The optical and electrical parameters of the oxygenated and OE-free devices are compared after CdC12 tre... 1% oxygen is incorporated into both CdS and CdTe layers through RF sputtering of CdS/CdTe thin film solar cells. The optical and electrical parameters of the oxygenated and OE-free devices are compared after CdC12 treatment and annealing in ambient Ar and/or air. The effects of ambient annealing on the electrical and optical properties of the films are investigated using current-voltage characterization, field emission scanning electron microscopy, X-ray diffraction, and optical transmission spectroscopy. The 1% oxygen content can slightly increase the grain size while the crystallinity does not change. Annealing in ambient Ar can increase the transmission rate of the oxygenated devices. 展开更多
关键词 CdTe thin film oxygen incorporation SEM X-ray diffraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部