The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(...The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(SCF). Single phase SCFM was successfully prepared by a combined EDTA-citric method. SCFM shows a lower thermal expansion coefficient (24× 10^-6-29× 10^-6/K) than SCF between 500 and 1050 ℃, indicating a more stable structure. SCFM shows a high oxygen permeation flux, although the oxygen flux of SCFM decreases slightly because of Mo dopant. Furthermore, it was demonstrated that the doping of Mo in SCF can prevent the order-disorder transition and improves the chemical stability to CO2.展开更多
In order to improve the surface hardness and wear resistance of Ti and Ti alloy components, an oxygen permeation treatment (OPT) was developed. The oxygen permeation behaviors of three Ti alloys, TA2, TB5 and TC11, tr...In order to improve the surface hardness and wear resistance of Ti and Ti alloy components, an oxygen permeation treatment (OPT) was developed. The oxygen permeation behaviors of three Ti alloys, TA2, TB5 and TC11, treated in air with O-P medium at high temperature have been studied. The results show that the 0-P treatment can significantly improve the surface hardness of Ti alloys. The oxidation mass-gain of β-Ti alloy (TB5) is much higher than α-Ti alloy (TA2) under the same condition, while α+β Ti alloy (TC11) is the lowest. All the Ti alloys treated at this condition produce two surface layers: the outer layer consists mainly of TiO2, as well as trace of other oxides, and the inner layer consists of a Ti-O interstitial solid solution formed by the diffusion of oxygen in α crystal lattice. Thick scales of β Ti alloy (TB5) are easily formed depending mainly on the poor solid solution content of oxygen, while deep solution layer can be formed since partial β phase has been transformed into α phase. The scales of α-β Ti alloy (TC11) are very thin and compact. Aluminum-rich zone, as well as deficient zone, is found in oxide layers. A crystallographic characterization of oxygen solution layer has been performed and evaluated by crystallographic lattice constant.展开更多
Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0....Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0.07503-δ oxides, and its subsequent effects on phase structure stability, oxygen permeability and oxygen desorption were systematically investigated by XRD, TG-DSC, Hz-TPR, O2-TPD techniques and oxygen permeation experiments. The partial substitution with Ca2+, La3+ or Sr2+, whose ionic radii are smaller than that of Ba2+, succeeded in stabilizing the cubic perovskite structure without formation of impurity phases, as revealed by XRD analysis. Oxygen-involving experi- ments showed that BRCFT with A-site fully occupied by Ba2+ exhibited good oxygen permeation flux under He flow, reaching about 2.3 mL.min-l .cm-2 at 900 with I mm thickness. Of all the membranes, BLCFT membrane showed better chemical stability in CO2, owing to the reduction in alkalinity of the mixed conductor oxide by La doping. In addition, we also found the stability of the perovskite structure under reducing atmospheres was strengthened by increasing the size of A-site cation (Ba2+〉La3+〉SrZ+〉Ca2+).展开更多
Cobalt-free perovskite-type oxides BaFel_yTayO3-6 (0 _〈 y -〈 0.2) were synthesized via a simple solid state reac- tion. The cubic perovskite structure can be obtained when y is over 0.1. BaFeo.Ta0.lO3-6 (BFT0.1)...Cobalt-free perovskite-type oxides BaFel_yTayO3-6 (0 _〈 y -〈 0.2) were synthesized via a simple solid state reac- tion. The cubic perovskite structure can be obtained when y is over 0.1. BaFeo.Ta0.lO3-6 (BFT0.1) membrane shows the highest oxygen permeation flux, which can reach 1.6 ml. min- 1. cm-2 at 950 ℃ under the gradient of air/He. The O2-TPD results reveal that BaFe0.9Ta0.lO3-a material shows an excellent reversibility and phase structure stability in air. The oxygen permeation flux is limited by the bulk diffusion when the membrane thick- ness is over 0.8 mm, and it is limited by both the bulk diffusion and the surface exchange when the membrane thickness is below 0.5 mm. Stable oxygen permeation fluxes are obtained during 180 h operation.展开更多
Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method. The crystal structure, oxygen nonstoichiometry, and phase stability of the materials were studied...Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method. The crystal structure, oxygen nonstoichiometry, and phase stability of the materials were studied by TGA and XRD. Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃. Results showed that doping Cu in SrFeO3-δ compound had a significant effect on the formation of single-phased perovskite structure. For SrFe1-xCu2O3-δ series materials, the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1-0.3). The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%. SrFe0.7Cu0.3O3-δ showed high oxygen permeation flux, but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.展开更多
Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized b...Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10^-7 mol·cm^-2·min^-1 and 97.76 kJ·mol^-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.展开更多
A mathematic model is developed for the perovskite-type mixed ionic-electronic conducting(MIEC) membrane,which makes it possible to simulate the process of oxygen separation in the U-shaped Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_...A mathematic model is developed for the perovskite-type mixed ionic-electronic conducting(MIEC) membrane,which makes it possible to simulate the process of oxygen separation in the U-shaped Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_3-δhollow-fiber membrane. The model correlates the oxygen permeation flux to the measurable variables. The trends of calculated results for purge operation coincide well with the experimental data, therefore the model is considerable for flux prediction under vacuum operation. Higher oxygen separation efficiency can be achieved with vacuum operation than purge operation. Parameter study with vacuum operation reveals that oxygen permeation flux increases with higher vacuum levels, and vacuum pressure of around 1.013 × 10~3 Pa is the optimal.Also, vacuum operation on the lumen side is much more efficient to achieve higher oxygen permeation flux compared with compression mode on the shell side.展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
Dual-phase membranes of 60 wt% Ce0.8Gd0.2O2-δ-40 wt% Pr Ba Co2exFexO3 d(0 x 2) were prepared by a combined citrate and ethylene diamine tetraacetic acid(EDTA) complexing method. X-ray diffraction(XRD)results re...Dual-phase membranes of 60 wt% Ce0.8Gd0.2O2-δ-40 wt% Pr Ba Co2exFexO3 d(0 x 2) were prepared by a combined citrate and ethylene diamine tetraacetic acid(EDTA) complexing method. X-ray diffraction(XRD)results revealed the good chemical compatibility between ion-conducting phase CGO and electron-conducting phases PBC2 xFxO after sintering in air. The Fe ionic dopant had a significant effect on the phase structure stability and oxygen permeability under CO2 atmosphere, which was confirmed by XRD, thermogravimetrye differential scanning calorimetry(TGeD SC), scanning electron microscopy(SEM) and oxygen permeation experiments. CGOeP BC0.5F1.5O dual-phase membrane demonstrated a stable oxygen permeation flux of2.71x10-7mol cm 2s 1with 50 mol% He/CO2 as the sweep gas at 925 C, and this value was much higher than that of perovskite-type membranes. The rate-limiting step in the oxygen permeation process changed from the bulk diffusion to the surface oxygen exchange when the CGOeP BC0.5F1.5O membrane thickness decreased to 0.8 mm or less. Due to the high oxygen permeation fluxes and the excellent structural stability under CO2 atmosphere, the CGOeP BC0.5F1.5O membrane is a great potential candidate material for separating oxygen from air in the oxy-fuel combustion techniques.展开更多
Oxidative coupling of methane to ethylene is of high importance to the future of light olefin industry.However,the carbon atom efficiency is normally below 50%in gas phase reaction which is limited to the overoxidatio...Oxidative coupling of methane to ethylene is of high importance to the future of light olefin industry.However,the carbon atom efficiency is normally below 50%in gas phase reaction which is limited to the overoxidation of methane to carbon dioxide with oxidants.Here we present an alternative approach of electrochemical oxidation of methane in an oxygen permeation membrane reactor and show the highest conversion of methane and C2 selectivity of 28%and 40.2%at 1150℃,respectively.We prepare the 100-μm-thick perovskite(La0.8 Sr0.2)1-x Cr0.5 Fe0.5 O3-δ(LSCrF)dense membrane(La0.8 Sr0.2)1-xCr0.5 Fe0.5O3-δ(LSCrF–Fe)(x=0,0.02,0.05 and 0.10)scaffolds while the excess of Fe would be exsolved on porous skeleton to create metal-oxide interfaces toward methane oxidation.The metal-oxide interfaces not only facilitate the activation of C–H bond in methane but also enhance the coking resistance.展开更多
In this study,with La_(0.8)Sr_(0.2)Cr_(0.5)Fe_(0.5)O_(3-δ)(LSCrF)and Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)taken as the electronic conducting phase and the oxide ion conductor,respectively,dual-phase composite ceramic membrane...In this study,with La_(0.8)Sr_(0.2)Cr_(0.5)Fe_(0.5)O_(3-δ)(LSCrF)and Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)taken as the electronic conducting phase and the oxide ion conductor,respectively,dual-phase composite ceramic membranes with or without 3%(in mole)Y_(2)O_(3) stable ZrO_(2)(3YSZ)support were prepared and tested as oxygen separation membranes.Then,the oxygen transmission performance was tested by the electrochemical method based on the limiting current.The results obtained with this method coincide with those acquired by means of gas chromatography.Furthermore,the dependences of oxygen permeation rate on oxygen partial pressure,temperature and ceramic membrane thickness were analyzed.When air was used as the sweeping gas on the porous 3YSZ supported SDC-LSCrF dual-phase membrane,the oxygen permeation rate can reach 0.73,0.82,0.90 and 0.97 mL cm^(-2) min^(-1) at 650,700,750 and 800℃,respectively.展开更多
Bi26MO10O69 nanopowder was prepared by hydrothermal method and used as a surface modification material for oxygen separation membrane to enhance oxygen permeability. Thermal decomposition behavior and phase variation ...Bi26MO10O69 nanopowder was prepared by hydrothermal method and used as a surface modification material for oxygen separation membrane to enhance oxygen permeability. Thermal decomposition behavior and phase variation of the precursor were investigated by thermal analyzer (TG-DSC) and high-temperature X-ray diffraction (HT-XRD). Bi26MO10O69 porous layer was coated on the air side of BaCo0.7Fe0.2Nb0.1O3-δ (BCFN) oxygen permeable membrane by dipping method. In the partial oxidation experiment of coke oven gas (COG), the Bi26Mo10O69-coated BCFN membrane exhibits higher oxygen permeability and CH4 conversion than the uncoated BCFN membrane. When the thickness of BCFN membrane was 1 mm and the COG and air fluxes were 120 and 100 mL/min, the oxygen permeation flux reached 16.48 mL/(min.cm^2) at 875℃, which was 16.96% higher than the uncoated BCFN membrane. Therefore, Bi26MoloO69 porous layer on the air side will be promising modification coating on the oxygen permeability of BCFN membrane.展开更多
Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of metha...Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of methane in coke oven gas (COG). At 1173 K, 94% of methane conversion, 85% of H2 selectivity, 107% of CO selectivity, and as high as 15.4 mL·cm^-2·min^-1 of oxygen permeation flux were obtained. The BCFNO membrane itself had poor catalytic activity to partial oxidation of CH4 in COG. During continuous operation for 70 h at 1173 K, no degradation of the membrane reaction performance was observed. XRD and SEM characterization also demonstrated that the BCFNO membrane reactor exhibited good stability in partial oxidation of methane in COG.展开更多
CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved wi...CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm(2) oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4CO2-O-2 reforming condition.展开更多
In this study,perovskite-type La_(0.7)Ca_(0.3)Co_(0.3)Fe_(0.6)M_(0.1)O_(3-δ)(M=Cu,Zn)powders were synthesized using a scalable reverse co-precipitation method,presenting them as novel materials for oxygen transport m...In this study,perovskite-type La_(0.7)Ca_(0.3)Co_(0.3)Fe_(0.6)M_(0.1)O_(3-δ)(M=Cu,Zn)powders were synthesized using a scalable reverse co-precipitation method,presenting them as novel materials for oxygen transport membranes.The comprehensive study covered various aspects including oxygen permeability,crystal structure,conductivity,morphology,CO_(2) tolerance,and long-term regenerative durability with a focus on phase structure and composition.The membrane La_(0.7)Ca_(0.3)Co_(0.3)Fe_(0.6)M_(0.1)O_(3-δ)exhibited high oxygen permeation fluxes,reaching up to 0.88 and 0.64 mL·min^(−1)·cm^(−2) under air/He and air/CO_(2) gradients at 1173 K,respectively.After 1600 h of CO_(2) exposure,the perovskite structure remained intact,showcasing superior CO_(2) resistance.A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure,oxygen vacancy formation,and transport behavior of the membranes.These findings underscore the potential of this highly CO_(2)-tolerant membrane for applications in high-temperature oxygen separation.The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.展开更多
The performance of LiNi/γ-Al2O3 catalysts modified by rare earth metal oxide (La2O3 or CeO2) packed on BCFNO membrane reactor was discussed for the partial oxidation of methane (POM) in coke oven gas (COG) at 8...The performance of LiNi/γ-Al2O3 catalysts modified by rare earth metal oxide (La2O3 or CeO2) packed on BCFNO membrane reactor was discussed for the partial oxidation of methane (POM) in coke oven gas (COG) at 875 ℃. The NiO/γ-Al2O3 catalysts with different amounts of La2O3 and CeO2 were prepared with the same preparation method and under the same condition in order to compare the reaction performance (oxygen permeation, CH4 conversion, H2 and CO selectivity) on the membrane reactor. The results show that the oxygen permeation flux increased significantly with LiNiREOx/γ-Al2O3 (RE = La or Ce) catalysts by adding the element of rare earth especially the Ce during the POM in COG. Such as, the Li15wt%CeO29wt%NiO/γ-Al2O3 catalyst with an oxygen permeation flux of 24.71 ml·cm^-2·min^-1 and a high CH4 conversion was obtained in 875 ℃. The resulted high oxygen permeation flux may be due to the added Ce that inhibited the strong interaction between Ni and Al2O3 to form the NiAl2O4 phase. In addition, the introduction of Ce leads up to an important property of storing and releasing oxygen.展开更多
Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from ...Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.展开更多
Ba1.0Co0.7Fe0.2Nb0.1O3-γ(BCFN) oxide with perovskite cubic structure was synthesized by solid state reaction method. COa corrosion of BCFN membrane was investigated by X-ray diffraction (XRD), scanning electron m...Ba1.0Co0.7Fe0.2Nb0.1O3-γ(BCFN) oxide with perovskite cubic structure was synthesized by solid state reaction method. COa corrosion of BCFN membrane was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance infrared Fourier- transformed spectroscopy (DRIFT) and X-ray absorption fine structure spectroscopy (XAFS). Cobalt (Co) K-edge absorption spectra of BCFN annealed in COa reveal that the oxidation states of Co in all the samples were larger than +3 and they decreased with the increase of calcination time. At 800 ℃, 1% CO2 introduced into He could speed up the reduction of Co cations in comparison with pure He. In addition, sulfate ions in the bulk of BCFN membrane preferred to migrate to the surface under CO2 calcination and form monoclinic Ba(CO3)0.9(SO4)0.1 besides orthorhombic witherite. Moreover, SEM results indicate that the nucleation and growth of carbonates grains started at the grain boundary of the membrane.展开更多
Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ has been successfully prepared by using citrate-EDTA complexation method at relatively low calcination temperature. The structure and thermal decomposition process of ...Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ has been successfully prepared by using citrate-EDTA complexation method at relatively low calcination temperature. The structure and thermal decomposition process of the complex precursor have been investigated by means of differential scanning calorimetry-thermal gravimetric analysis (DSC/TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopic (FT-IR) measurements. The precursor decomposed completely and started to form perovskite-type oxide above 420 ℃ according to the differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results. Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ obtained has been confirmed from the XRD pattern, and no peak of SrCO3 was found by XRD of the oxides synthesized at a relatively low temperature of 800℃. The reducibility of La0.6Sr0.4Co0.8Fe0.2O3-δ was also characterized by the temperature programmed reduction (TPR) technique. Disk shaped dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was prepared by the isostatical pressing method. The oxygen flux rate of dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was (2.8-18)× 10^-8 mol/(cm^2.s) in the temperature range of 800-1000 ℃.展开更多
A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type(La1-xCax)2(Ni0.75Cu0.25)O4+δwas successfully prepared through a sol-gel route.Their chemical compatibility,oxygen permeability,CO and CO...A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type(La1-xCax)2(Ni0.75Cu0.25)O4+δwas successfully prepared through a sol-gel route.Their chemical compatibility,oxygen permeability,CO and CO2 tolerance,and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied.The results show that higher Ca contents in the material lead to the formation of CaCO3.A constant oxygen permeation flux of about 0.63 mL·min−1·cm−2 at 1173 K through a 0.65 mm thick membrane was measured for(La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ,using either helium or pure CO2 as sweep gas.Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration.The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature.In addition,this membrane did not deteriorate in a high-energy CO2 plasma.The present work demonstrates that this(La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δmembrane is a promising chemically robust candidate for oxygen separation applications.展开更多
文摘The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(SCF). Single phase SCFM was successfully prepared by a combined EDTA-citric method. SCFM shows a lower thermal expansion coefficient (24× 10^-6-29× 10^-6/K) than SCF between 500 and 1050 ℃, indicating a more stable structure. SCFM shows a high oxygen permeation flux, although the oxygen flux of SCFM decreases slightly because of Mo dopant. Furthermore, it was demonstrated that the doping of Mo in SCF can prevent the order-disorder transition and improves the chemical stability to CO2.
基金The project was supported by the National Natural Science Foundation of China(Grant 50171073).
文摘In order to improve the surface hardness and wear resistance of Ti and Ti alloy components, an oxygen permeation treatment (OPT) was developed. The oxygen permeation behaviors of three Ti alloys, TA2, TB5 and TC11, treated in air with O-P medium at high temperature have been studied. The results show that the 0-P treatment can significantly improve the surface hardness of Ti alloys. The oxidation mass-gain of β-Ti alloy (TB5) is much higher than α-Ti alloy (TA2) under the same condition, while α+β Ti alloy (TC11) is the lowest. All the Ti alloys treated at this condition produce two surface layers: the outer layer consists mainly of TiO2, as well as trace of other oxides, and the inner layer consists of a Ti-O interstitial solid solution formed by the diffusion of oxygen in α crystal lattice. Thick scales of β Ti alloy (TB5) are easily formed depending mainly on the poor solid solution content of oxygen, while deep solution layer can be formed since partial β phase has been transformed into α phase. The scales of α-β Ti alloy (TC11) are very thin and compact. Aluminum-rich zone, as well as deficient zone, is found in oxide layers. A crystallographic characterization of oxygen solution layer has been performed and evaluated by crystallographic lattice constant.
基金supported by the National Natural Science Foundation of China(51004069)the National Science Fund for Distinguished Young Scholars(51225401)+1 种基金China Postdoctoral Science Foundation(201104254)the Innovation Program of Shanghai Municipal Education Commission and Shanghai University(14YZ013 and SDCX2012002)
文摘Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0.07503-δ oxides, and its subsequent effects on phase structure stability, oxygen permeability and oxygen desorption were systematically investigated by XRD, TG-DSC, Hz-TPR, O2-TPD techniques and oxygen permeation experiments. The partial substitution with Ca2+, La3+ or Sr2+, whose ionic radii are smaller than that of Ba2+, succeeded in stabilizing the cubic perovskite structure without formation of impurity phases, as revealed by XRD analysis. Oxygen-involving experi- ments showed that BRCFT with A-site fully occupied by Ba2+ exhibited good oxygen permeation flux under He flow, reaching about 2.3 mL.min-l .cm-2 at 900 with I mm thickness. Of all the membranes, BLCFT membrane showed better chemical stability in CO2, owing to the reduction in alkalinity of the mixed conductor oxide by La doping. In addition, we also found the stability of the perovskite structure under reducing atmospheres was strengthened by increasing the size of A-site cation (Ba2+〉La3+〉SrZ+〉Ca2+).
基金the National Science Fund for Distinguished Young Scholars of China(No.21225625)the National Natural Science Foundation of China(No.21176087)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110172110013)
文摘Cobalt-free perovskite-type oxides BaFel_yTayO3-6 (0 _〈 y -〈 0.2) were synthesized via a simple solid state reac- tion. The cubic perovskite structure can be obtained when y is over 0.1. BaFeo.Ta0.lO3-6 (BFT0.1) membrane shows the highest oxygen permeation flux, which can reach 1.6 ml. min- 1. cm-2 at 950 ℃ under the gradient of air/He. The O2-TPD results reveal that BaFe0.9Ta0.lO3-a material shows an excellent reversibility and phase structure stability in air. The oxygen permeation flux is limited by the bulk diffusion when the membrane thick- ness is over 0.8 mm, and it is limited by both the bulk diffusion and the surface exchange when the membrane thickness is below 0.5 mm. Stable oxygen permeation fluxes are obtained during 180 h operation.
基金Natural Science Foundation of Guangdong Province (No. 030514)the Science and Technology Program of Guangdong Province(No. 2004B33401006)
文摘Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method. The crystal structure, oxygen nonstoichiometry, and phase stability of the materials were studied by TGA and XRD. Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃. Results showed that doping Cu in SrFeO3-δ compound had a significant effect on the formation of single-phased perovskite structure. For SrFe1-xCu2O3-δ series materials, the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1-0.3). The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%. SrFe0.7Cu0.3O3-δ showed high oxygen permeation flux, but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.
基金Supported by the National Advanced Materials Committee of China(No.715-006-0120)and the National Natural Science Foundation of China(No.59789201).
文摘Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10^-7 mol·cm^-2·min^-1 and 97.76 kJ·mol^-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.
基金Supported by the National Science Fund for Distinguished Young Scholars of China(21225625)the Natural Science Foundation of China(21176087)the Specialized Research Fund for the Doctoral Program of Higher Education(20110172110013)
文摘A mathematic model is developed for the perovskite-type mixed ionic-electronic conducting(MIEC) membrane,which makes it possible to simulate the process of oxygen separation in the U-shaped Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_3-δhollow-fiber membrane. The model correlates the oxygen permeation flux to the measurable variables. The trends of calculated results for purge operation coincide well with the experimental data, therefore the model is considerable for flux prediction under vacuum operation. Higher oxygen separation efficiency can be achieved with vacuum operation than purge operation. Parameter study with vacuum operation reveals that oxygen permeation flux increases with higher vacuum levels, and vacuum pressure of around 1.013 × 10~3 Pa is the optimal.Also, vacuum operation on the lumen side is much more efficient to achieve higher oxygen permeation flux compared with compression mode on the shell side.
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
基金supported by the National Natural Science Foundation of China (Nos. 51004069 and 51474145)the National Science Fund for Distinguished Young Scholars (No. 51225401)the Innovation Program of Shanghai Municipal Education Commission and Shanghai University (Nos. 14YZ013 and SDCX2012002)
文摘Dual-phase membranes of 60 wt% Ce0.8Gd0.2O2-δ-40 wt% Pr Ba Co2exFexO3 d(0 x 2) were prepared by a combined citrate and ethylene diamine tetraacetic acid(EDTA) complexing method. X-ray diffraction(XRD)results revealed the good chemical compatibility between ion-conducting phase CGO and electron-conducting phases PBC2 xFxO after sintering in air. The Fe ionic dopant had a significant effect on the phase structure stability and oxygen permeability under CO2 atmosphere, which was confirmed by XRD, thermogravimetrye differential scanning calorimetry(TGeD SC), scanning electron microscopy(SEM) and oxygen permeation experiments. CGOeP BC0.5F1.5O dual-phase membrane demonstrated a stable oxygen permeation flux of2.71x10-7mol cm 2s 1with 50 mol% He/CO2 as the sweep gas at 925 C, and this value was much higher than that of perovskite-type membranes. The rate-limiting step in the oxygen permeation process changed from the bulk diffusion to the surface oxygen exchange when the CGOeP BC0.5F1.5O membrane thickness decreased to 0.8 mm or less. Due to the high oxygen permeation fluxes and the excellent structural stability under CO2 atmosphere, the CGOeP BC0.5F1.5O membrane is a great potential candidate material for separating oxygen from air in the oxy-fuel combustion techniques.
基金Supported by the National Key Research and Development Program of China(2017YFA0700102)National Natural Science Foundation of China(91845202)+1 种基金Dalian National Laboratory for Clean Energy(DNL180404)Strategic Priority Research Program of Chinese Academy of Sciences(XDB2000000)。
文摘Oxidative coupling of methane to ethylene is of high importance to the future of light olefin industry.However,the carbon atom efficiency is normally below 50%in gas phase reaction which is limited to the overoxidation of methane to carbon dioxide with oxidants.Here we present an alternative approach of electrochemical oxidation of methane in an oxygen permeation membrane reactor and show the highest conversion of methane and C2 selectivity of 28%and 40.2%at 1150℃,respectively.We prepare the 100-μm-thick perovskite(La0.8 Sr0.2)1-x Cr0.5 Fe0.5 O3-δ(LSCrF)dense membrane(La0.8 Sr0.2)1-xCr0.5 Fe0.5O3-δ(LSCrF–Fe)(x=0,0.02,0.05 and 0.10)scaffolds while the excess of Fe would be exsolved on porous skeleton to create metal-oxide interfaces toward methane oxidation.The metal-oxide interfaces not only facilitate the activation of C–H bond in methane but also enhance the coking resistance.
基金The financial support from the National Natural Science Foundation of China(No.51672297 and No.51836004)is highly appreciated.
文摘In this study,with La_(0.8)Sr_(0.2)Cr_(0.5)Fe_(0.5)O_(3-δ)(LSCrF)and Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)taken as the electronic conducting phase and the oxide ion conductor,respectively,dual-phase composite ceramic membranes with or without 3%(in mole)Y_(2)O_(3) stable ZrO_(2)(3YSZ)support were prepared and tested as oxygen separation membranes.Then,the oxygen transmission performance was tested by the electrochemical method based on the limiting current.The results obtained with this method coincide with those acquired by means of gas chromatography.Furthermore,the dependences of oxygen permeation rate on oxygen partial pressure,temperature and ceramic membrane thickness were analyzed.When air was used as the sweeping gas on the porous 3YSZ supported SDC-LSCrF dual-phase membrane,the oxygen permeation rate can reach 0.73,0.82,0.90 and 0.97 mL cm^(-2) min^(-1) at 650,700,750 and 800℃,respectively.
基金Projects(51272154,51472156)supported by the National Natural Science Foundation of ChinaProjects(sdcx2012033,sdcx2012062)supported by the Innovation Fund of Shanghai University,China+1 种基金Project(14ZR1416400)supported by Special Research Foundation for Training and Selecting Outstanding Young Teachers of Universities in Shanghai,Chinasupported by Shanghai Science and Technology Committee,China
文摘Bi26MO10O69 nanopowder was prepared by hydrothermal method and used as a surface modification material for oxygen separation membrane to enhance oxygen permeability. Thermal decomposition behavior and phase variation of the precursor were investigated by thermal analyzer (TG-DSC) and high-temperature X-ray diffraction (HT-XRD). Bi26MO10O69 porous layer was coated on the air side of BaCo0.7Fe0.2Nb0.1O3-δ (BCFN) oxygen permeable membrane by dipping method. In the partial oxidation experiment of coke oven gas (COG), the Bi26Mo10O69-coated BCFN membrane exhibits higher oxygen permeability and CH4 conversion than the uncoated BCFN membrane. When the thickness of BCFN membrane was 1 mm and the COG and air fluxes were 120 and 100 mL/min, the oxygen permeation flux reached 16.48 mL/(min.cm^2) at 875℃, which was 16.96% higher than the uncoated BCFN membrane. Therefore, Bi26MoloO69 porous layer on the air side will be promising modification coating on the oxygen permeability of BCFN membrane.
基金supported by the National High-Tech Research and Development Program of China (No. 2006AA11A189)the Research on Novel Technology of Hydrogen Production from Oven Gas from Metallurgy Process (No. 07DZ12036)the National Key Technolo-gies Research and Development Program of China (No. 2006BA103A05)
文摘Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of methane in coke oven gas (COG). At 1173 K, 94% of methane conversion, 85% of H2 selectivity, 107% of CO selectivity, and as high as 15.4 mL·cm^-2·min^-1 of oxygen permeation flux were obtained. The BCFNO membrane itself had poor catalytic activity to partial oxidation of CH4 in COG. During continuous operation for 70 h at 1173 K, no degradation of the membrane reaction performance was observed. XRD and SEM characterization also demonstrated that the BCFNO membrane reactor exhibited good stability in partial oxidation of methane in COG.
文摘CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm(2) oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4CO2-O-2 reforming condition.
文摘In this study,perovskite-type La_(0.7)Ca_(0.3)Co_(0.3)Fe_(0.6)M_(0.1)O_(3-δ)(M=Cu,Zn)powders were synthesized using a scalable reverse co-precipitation method,presenting them as novel materials for oxygen transport membranes.The comprehensive study covered various aspects including oxygen permeability,crystal structure,conductivity,morphology,CO_(2) tolerance,and long-term regenerative durability with a focus on phase structure and composition.The membrane La_(0.7)Ca_(0.3)Co_(0.3)Fe_(0.6)M_(0.1)O_(3-δ)exhibited high oxygen permeation fluxes,reaching up to 0.88 and 0.64 mL·min^(−1)·cm^(−2) under air/He and air/CO_(2) gradients at 1173 K,respectively.After 1600 h of CO_(2) exposure,the perovskite structure remained intact,showcasing superior CO_(2) resistance.A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure,oxygen vacancy formation,and transport behavior of the membranes.These findings underscore the potential of this highly CO_(2)-tolerant membrane for applications in high-temperature oxygen separation.The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.
基金supported by the National High Technology Research and Development Program of China (No. 2006AA11A189)Science and Technology Commission of Shanghai Municipality (No. 06DZ12212)+1 种基金National Engineering Research Center of Advanced Steel Technology (NERCAST) (No. 050209)the Innovation Fund for Graduate Studentof Shanghai University (SHUCX0910003)
文摘The performance of LiNi/γ-Al2O3 catalysts modified by rare earth metal oxide (La2O3 or CeO2) packed on BCFNO membrane reactor was discussed for the partial oxidation of methane (POM) in coke oven gas (COG) at 875 ℃. The NiO/γ-Al2O3 catalysts with different amounts of La2O3 and CeO2 were prepared with the same preparation method and under the same condition in order to compare the reaction performance (oxygen permeation, CH4 conversion, H2 and CO selectivity) on the membrane reactor. The results show that the oxygen permeation flux increased significantly with LiNiREOx/γ-Al2O3 (RE = La or Ce) catalysts by adding the element of rare earth especially the Ce during the POM in COG. Such as, the Li15wt%CeO29wt%NiO/γ-Al2O3 catalyst with an oxygen permeation flux of 24.71 ml·cm^-2·min^-1 and a high CH4 conversion was obtained in 875 ℃. The resulted high oxygen permeation flux may be due to the added Ce that inhibited the strong interaction between Ni and Al2O3 to form the NiAl2O4 phase. In addition, the introduction of Ce leads up to an important property of storing and releasing oxygen.
基金Supported by the Natural Science Foundation of Guangdong Province (030514) and the Science and Technology Program of Guangdong Province (2004B33401006).
文摘Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.
基金supported by the National Natural Science Foundation of China(No.51274139,51174133)the Innovation Program of Shanghai Municipal Education Commission(13YZ019)+1 种基金the Doctoral Fund of Ministry of Education of China(20123108120020)the Innovative Foundation of Shanghai University
文摘Ba1.0Co0.7Fe0.2Nb0.1O3-γ(BCFN) oxide with perovskite cubic structure was synthesized by solid state reaction method. COa corrosion of BCFN membrane was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance infrared Fourier- transformed spectroscopy (DRIFT) and X-ray absorption fine structure spectroscopy (XAFS). Cobalt (Co) K-edge absorption spectra of BCFN annealed in COa reveal that the oxidation states of Co in all the samples were larger than +3 and they decreased with the increase of calcination time. At 800 ℃, 1% CO2 introduced into He could speed up the reduction of Co cations in comparison with pure He. In addition, sulfate ions in the bulk of BCFN membrane preferred to migrate to the surface under CO2 calcination and form monoclinic Ba(CO3)0.9(SO4)0.1 besides orthorhombic witherite. Moreover, SEM results indicate that the nucleation and growth of carbonates grains started at the grain boundary of the membrane.
基金Sponsored by SRF for ROCS, key lab of enhanced heat transfer and energy conservation (MOE)Guangdong provincial natural science foundation (04020126).
文摘Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ has been successfully prepared by using citrate-EDTA complexation method at relatively low calcination temperature. The structure and thermal decomposition process of the complex precursor have been investigated by means of differential scanning calorimetry-thermal gravimetric analysis (DSC/TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopic (FT-IR) measurements. The precursor decomposed completely and started to form perovskite-type oxide above 420 ℃ according to the differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results. Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ obtained has been confirmed from the XRD pattern, and no peak of SrCO3 was found by XRD of the oxides synthesized at a relatively low temperature of 800℃. The reducibility of La0.6Sr0.4Co0.8Fe0.2O3-δ was also characterized by the temperature programmed reduction (TPR) technique. Disk shaped dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was prepared by the isostatical pressing method. The oxygen flux rate of dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was (2.8-18)× 10^-8 mol/(cm^2.s) in the temperature range of 800-1000 ℃.
基金This work is part of the project “Plasma-induced CO2-conversion”(PiCK,project number:03SFK2S3B)and financially supported by the German Federal Ministry of Education and Research in the framework of the“Kopemikus projects for the Energiewende”.The authors are thankfUl to B.Sc.Laura Steinle(University of Stuttgart)for her assistance during the CO stability tests,and Christine Stefani and Prof.Dr.Robert Dinnebier(Max Planck Institute for Solid State Research,Stuttgart)for the in situ PXRD measurements,respectively.G.C.thanks Frank Hack and Dr.Angelika Veziridis for their kind support during experiments and discussions.
文摘A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type(La1-xCax)2(Ni0.75Cu0.25)O4+δwas successfully prepared through a sol-gel route.Their chemical compatibility,oxygen permeability,CO and CO2 tolerance,and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied.The results show that higher Ca contents in the material lead to the formation of CaCO3.A constant oxygen permeation flux of about 0.63 mL·min−1·cm−2 at 1173 K through a 0.65 mm thick membrane was measured for(La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ,using either helium or pure CO2 as sweep gas.Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration.The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature.In addition,this membrane did not deteriorate in a high-energy CO2 plasma.The present work demonstrates that this(La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δmembrane is a promising chemically robust candidate for oxygen separation applications.