The microstructure and Ge-V photoluminescent properties of diamond particles treated by microwave oxygen plasma are investigated.The results show that in the first 5 min of microwave plasma treatment,graphite and diso...The microstructure and Ge-V photoluminescent properties of diamond particles treated by microwave oxygen plasma are investigated.The results show that in the first 5 min of microwave plasma treatment,graphite and disordered carbon on the surface of the particles are etched away,so that diamond with regular crystal plane,smaller lattice stress,and better crystal quality is exposed,producing a Ge-V photoluminescence(PL)intensity 4 times stronger and PL peak FWHM(full width at half maximum)value of 6.6 nm smaller than the as-deposited sample.It is observed that the cycles of‘diamond is converted into graphite and disordered carbon,then the graphite and disordered carbon are etched’can occur with the treatment time further increasing.During these cycles,the particle surface alternately appears smooth and rough,corresponding to the strengthening and weakening of Ge-V PL intensity,respectively,while the PL intensity is always stronger than that of the as-deposited sample.The results suggest that not only graphite but also disordered carbon weakens the Ge-V PL intensity.Our study provides a feasible way of enhancing the Ge-V PL properties and effectively controlling the surface morphology of diamond particle.展开更多
Graphene based nanosheets have been widely used as building blocks for fabrication of superior separation membrane for water processing.In particular,membranes made of reduced graphene oxide(rGO)show better stability ...Graphene based nanosheets have been widely used as building blocks for fabrication of superior separation membrane for water processing.In particular,membranes made of reduced graphene oxide(rGO)show better stability compared with graphene oxide(GO).However,densely stacked of rGO often results in low water flux.In this study,cellulose nanofibers(CNFs)were incorporated into the rGO laminates by vacuum filtration of dilute GO/CNF solution and thermal reduction at 150C for 1.5 h.The resulting rGO/CNF membrane was treated with oxygen plasma for 1–4 min to create nanopores on the membrane surface for the purpose of enhancing nano-filtration performance.The results showed that the optimum membrane performance was obtained by using the equal amount of GO(31.83 mg m^(-2))and CNFs accompanied by 3 min of plasma treatment,exhibiting a pure water permeance of 37.23.9 L m^(-2)h^(-1)bar^(-1)maintaining a rejection above 90%for Acid Fuchsin(1.2×1.1 nm),Rose Bengal(1.5×1.2 nm)and Brilliant Blue(2.2×1.7 nm).展开更多
Developing an electrically conductive and corrosion-resistant coating is essential for metal bipolar plates of polymer electrolyte membrane fuel cells(PEMFCs). Although enhanced corrosion resistance was seen for Cr co...Developing an electrically conductive and corrosion-resistant coating is essential for metal bipolar plates of polymer electrolyte membrane fuel cells(PEMFCs). Although enhanced corrosion resistance was seen for Cr coated stainless steel(Cr/SS) bipolar plates, they experience a quick decrease of through-plane electrical conductivity due to the formation of a porous and low-conductive corrosion product layer at the plate surface, thus leading to an increase in interfacial contact resistance(ICR). To tackle this issue, the multilayer Cr coatings were deposited using the magnetron sputtering with a remote inductively coupled oxygen plasma(O-ICP) in the present study. After the O-ICP treatment, a Cr oxide layer(Cr O*) is formed on the specimen surface. The Cr O*/Cr/SS has a remarkably lower stable corrosion rate(iss) than that of the native Cr oxides(Cr On/Cr/SS). Compared with Cr On/Cr/SS, the excellent performance of Cr O*/Cr/SS is attributed to a denser and thicker surface layer of Cr O* with Cr being oxidized to its highest valence state,Cr(VI). More importantly, the through-plane electrical conductivity of the specimens treated by the optimized O-ICP decreases much slowly than Cr On/Cr/SS and thus, the increament of ICR of Cr O*/Cr/SS after the potentiostatic polarization test is considerably smaller than that of Cr On/Cr/SS, which is benefited from the reduced issthat mitigates the deposition of corrosion products and hinders further oxidation of Cr coating. Therefore, Cr O*/Cr/SS proves to be a well balanced trade-off between corrosion resistance and through-plane electrical conductivity. The results of this study demonstrate that O-ICP treatment on a conductive metal coating is an effective strategy to improve the corrosion resistance and suppress the increase of ICR over the long-term polarization. The technique reported herein exhibits its promising potential application in preparing corrosion resistant and electrically conductive coatings on metal bipolar plates to be used in PEMFCs.展开更多
The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy...The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.展开更多
The application of polyimide( PI) fibers in the field of composite materials has been limited because of their smooth surface and chemical inertness. In order to overcome these problems,oxygen plasma was used to modif...The application of polyimide( PI) fibers in the field of composite materials has been limited because of their smooth surface and chemical inertness. In order to overcome these problems,oxygen plasma was used to modify the surface of fibers. The single fiber fragmentation test( SFFT) was used to characterize the interfacial adhesion performance of PI fiber as a simple and accurate analysis method. It was found that the interfacial shear strength between the fiber and resin after oxygen plasma modification was increased by 54% compared to the untreated fiber. Meanwhile, the surface micromorphology,chemical composition, wettability of fibers and the interface morphology at the fiber fracture were analyzed by field emission scanning electron microscope( FESEM), X-ray photoelectron spectroscopy( XPS),contact angle measurement and polarizing microscope,respectively. All of these results demonstrated that the single fiber fragmentation test for analyzing the interfacial adhesion of PI fibers was effective.展开更多
The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used...The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used as a catalyst. The destruction processes of 2,4-DCP proceed efficiently, the degree of decomposition increases in the combined plasma-catalytic process by a factor of 1.33 and reaches 80%. The experimental results were processed according to the first-order kinetic law (R<sup>2</sup> > 0.97), according to which the effective constants (0.36 ± 0.04) and (0.51 ± 0.03) s<sup>-1</sup> and the decomposition rates of 2,4-DCP (106 and 123 μmol/l·s) when treating model solutions without a catalyst and with vermiculite + Zr 5%, respectively, and the energy costs are 0.012 and 0.017 molecules/100eV. The main decomposition products present in the solution have been determined to be carboxylic acids, aldehydes, the contribution of which does not exceed 2%, as well as chloride ions, and in the gas phase they are carbon dioxide and molecular chlorine (the share of which does not exceed 1.5% of total chlorine content in the system).展开更多
NH3-plasma treatment is used to improve the quality of the gate dielectric and interface. Al2O3 is adopted as a buffer layer between HfO2 and MoS2 to decrease the interface-state density. Four groups of MOS capacitors...NH3-plasma treatment is used to improve the quality of the gate dielectric and interface. Al2O3 is adopted as a buffer layer between HfO2 and MoS2 to decrease the interface-state density. Four groups of MOS capacitors and back-gate transistors with different gate dielectrics are fabricated and their C–V and I–V characteristics are compared. It is found that the Al2O3/HfO2 back-gate transistor with NH3-plasma treatment shows the best electrical performance: high on–off current ratio of 1.53 × 107, higher field-effect mobility of 26.51 cm2/V·s, and lower subthreshold swing of 145 m V/dec.These are attributed to the improvements of the gate dielectric and interface qualities by the NH3-plasma treatment and the addition of Al2O3 as a buffer layer.展开更多
基金the Key Project of the National Natural Science Foundation of China(Grant No.U1809210)the National Key Research and Development Program of China(Grant No.2016YFE0133200)+3 种基金the Belt and Road Initiative International Cooperation Project from Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)the European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(Grant No.734578)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY18E020013)the International Science Technology Cooperation Program,China(Grant No.2014DFR51160).
文摘The microstructure and Ge-V photoluminescent properties of diamond particles treated by microwave oxygen plasma are investigated.The results show that in the first 5 min of microwave plasma treatment,graphite and disordered carbon on the surface of the particles are etched away,so that diamond with regular crystal plane,smaller lattice stress,and better crystal quality is exposed,producing a Ge-V photoluminescence(PL)intensity 4 times stronger and PL peak FWHM(full width at half maximum)value of 6.6 nm smaller than the as-deposited sample.It is observed that the cycles of‘diamond is converted into graphite and disordered carbon,then the graphite and disordered carbon are etched’can occur with the treatment time further increasing.During these cycles,the particle surface alternately appears smooth and rough,corresponding to the strengthening and weakening of Ge-V PL intensity,respectively,while the PL intensity is always stronger than that of the as-deposited sample.The results suggest that not only graphite but also disordered carbon weakens the Ge-V PL intensity.Our study provides a feasible way of enhancing the Ge-V PL properties and effectively controlling the surface morphology of diamond particle.
基金the Australian Research Council(Project No.IH170100009)。
文摘Graphene based nanosheets have been widely used as building blocks for fabrication of superior separation membrane for water processing.In particular,membranes made of reduced graphene oxide(rGO)show better stability compared with graphene oxide(GO).However,densely stacked of rGO often results in low water flux.In this study,cellulose nanofibers(CNFs)were incorporated into the rGO laminates by vacuum filtration of dilute GO/CNF solution and thermal reduction at 150C for 1.5 h.The resulting rGO/CNF membrane was treated with oxygen plasma for 1–4 min to create nanopores on the membrane surface for the purpose of enhancing nano-filtration performance.The results showed that the optimum membrane performance was obtained by using the equal amount of GO(31.83 mg m^(-2))and CNFs accompanied by 3 min of plasma treatment,exhibiting a pure water permeance of 37.23.9 L m^(-2)h^(-1)bar^(-1)maintaining a rejection above 90%for Acid Fuchsin(1.2×1.1 nm),Rose Bengal(1.5×1.2 nm)and Brilliant Blue(2.2×1.7 nm).
基金financially supported by the National Natural Science Foundation of China(No.51901188,51701113)the Natural Science Basic Research Program from Shaanxi province(No.2020JQ-171)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Canada First Research Excellence Fundthe Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2016-05494)。
文摘Developing an electrically conductive and corrosion-resistant coating is essential for metal bipolar plates of polymer electrolyte membrane fuel cells(PEMFCs). Although enhanced corrosion resistance was seen for Cr coated stainless steel(Cr/SS) bipolar plates, they experience a quick decrease of through-plane electrical conductivity due to the formation of a porous and low-conductive corrosion product layer at the plate surface, thus leading to an increase in interfacial contact resistance(ICR). To tackle this issue, the multilayer Cr coatings were deposited using the magnetron sputtering with a remote inductively coupled oxygen plasma(O-ICP) in the present study. After the O-ICP treatment, a Cr oxide layer(Cr O*) is formed on the specimen surface. The Cr O*/Cr/SS has a remarkably lower stable corrosion rate(iss) than that of the native Cr oxides(Cr On/Cr/SS). Compared with Cr On/Cr/SS, the excellent performance of Cr O*/Cr/SS is attributed to a denser and thicker surface layer of Cr O* with Cr being oxidized to its highest valence state,Cr(VI). More importantly, the through-plane electrical conductivity of the specimens treated by the optimized O-ICP decreases much slowly than Cr On/Cr/SS and thus, the increament of ICR of Cr O*/Cr/SS after the potentiostatic polarization test is considerably smaller than that of Cr On/Cr/SS, which is benefited from the reduced issthat mitigates the deposition of corrosion products and hinders further oxidation of Cr coating. Therefore, Cr O*/Cr/SS proves to be a well balanced trade-off between corrosion resistance and through-plane electrical conductivity. The results of this study demonstrate that O-ICP treatment on a conductive metal coating is an effective strategy to improve the corrosion resistance and suppress the increase of ICR over the long-term polarization. The technique reported herein exhibits its promising potential application in preparing corrosion resistant and electrically conductive coatings on metal bipolar plates to be used in PEMFCs.
基金This work was funded in part by NSF(DMR-0084301)Eastman Kodak Company.
文摘The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.
基金National Key R&D Program of China(No.2016YFB0303300)National Natural Science Foundation of China(No.11472077)Fundamental Research Funds for the Central Universities,China(No.2232018G-06)
文摘The application of polyimide( PI) fibers in the field of composite materials has been limited because of their smooth surface and chemical inertness. In order to overcome these problems,oxygen plasma was used to modify the surface of fibers. The single fiber fragmentation test( SFFT) was used to characterize the interfacial adhesion performance of PI fiber as a simple and accurate analysis method. It was found that the interfacial shear strength between the fiber and resin after oxygen plasma modification was increased by 54% compared to the untreated fiber. Meanwhile, the surface micromorphology,chemical composition, wettability of fibers and the interface morphology at the fiber fracture were analyzed by field emission scanning electron microscope( FESEM), X-ray photoelectron spectroscopy( XPS),contact angle measurement and polarizing microscope,respectively. All of these results demonstrated that the single fiber fragmentation test for analyzing the interfacial adhesion of PI fibers was effective.
文摘The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used as a catalyst. The destruction processes of 2,4-DCP proceed efficiently, the degree of decomposition increases in the combined plasma-catalytic process by a factor of 1.33 and reaches 80%. The experimental results were processed according to the first-order kinetic law (R<sup>2</sup> > 0.97), according to which the effective constants (0.36 ± 0.04) and (0.51 ± 0.03) s<sup>-1</sup> and the decomposition rates of 2,4-DCP (106 and 123 μmol/l·s) when treating model solutions without a catalyst and with vermiculite + Zr 5%, respectively, and the energy costs are 0.012 and 0.017 molecules/100eV. The main decomposition products present in the solution have been determined to be carboxylic acids, aldehydes, the contribution of which does not exceed 2%, as well as chloride ions, and in the gas phase they are carbon dioxide and molecular chlorine (the share of which does not exceed 1.5% of total chlorine content in the system).
基金Project supported by the National Natural Science Foundation of China(Grant No.61774064)
文摘NH3-plasma treatment is used to improve the quality of the gate dielectric and interface. Al2O3 is adopted as a buffer layer between HfO2 and MoS2 to decrease the interface-state density. Four groups of MOS capacitors and back-gate transistors with different gate dielectrics are fabricated and their C–V and I–V characteristics are compared. It is found that the Al2O3/HfO2 back-gate transistor with NH3-plasma treatment shows the best electrical performance: high on–off current ratio of 1.53 × 107, higher field-effect mobility of 26.51 cm2/V·s, and lower subthreshold swing of 145 m V/dec.These are attributed to the improvements of the gate dielectric and interface qualities by the NH3-plasma treatment and the addition of Al2O3 as a buffer layer.