The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst...Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.展开更多
To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising no...To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.展开更多
Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(...Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(4)moiety with different chemical/spin states(e.g.D1,D2,D3)to ORR are unclear since various states coexist inevitably.In the present work,Fe-N-C core-shell nanocatalyst with single lowspin Fe(Ⅱ)-N_(4)species(D1)is synthesized and identified with ex-situ ultralow temperature Mossbauer spectroscopy(T=1.6 K)that could essentially differentiate various Fe-N_(4)states and invisible Fe-O species.By quantifying with CO-pulse chemisorption,site density and turnover frequency of Fe-N-C catalysts reach 2.4×10^(-9)site g^(-1)and 23 e site~(-1)s^(-1)during the ORR,respectively.Half-wave potential(0.915V_(RHE))of the Fe-N-C catalyst is more positive(approximately 54 mV)than that of Pt/C.Moreover,we observe that the performance of PEMFCs on Fe-N-C almost achieves the 2025 target of the US Department of Energy by demonstrating a current density of 1.037 A cm^(-2)combined with the peak power density of 0,685 W cm^(-2),suggesting the critical role of Fe(Ⅱ)-N_(4)site(D1).After 500 h of running,PEMFCs still deliver a power density of 1.26 W cm^(-2)at 1.0 bar H_(2)-O_(2),An unexpected rate-determining step is figured out by isotopic labelling experiment and theoretical calculation.This work not only offers valuable insights regarding the intrinsic contribution of Fe-N_(4)with a single spin state to alkaline/acidic ORR,but also provides great opportunities for developing high-performance stable PEMFCs.展开更多
Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte s...Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte solution cannot be ignored.Consequently,we have systematically investigated the impact of adsorbate species and concentration,as well as solution pH,on the ORR activity on Pt(111)and Pt(poly)electrodes.The results all tend to establish a linear quantitative relationship between the onset potential for ORR and the adsorption equilibrium potential of the adsorbate.This finding indicates the decisive role of adsorbates in the onset potential for ORR,suggesting that the adsorption potential of adsorbates can serve as an intuitive criterion for ORR activity.Additional support for this conclusion is derived from experimental results obtained from the oxygen evolution reaction on Pt(poly)with different adsorbate species and from the hydrogen evolution reaction on Pt(111)with iodine adsorption.We further propose both an empirical equation for the onset potential for ORR and the concept of a potential-regulated adsor-bate shielding effect to elucidate the influence of adsorbates on ORR activity.This study provides new insights into the high onset overpotential of the ORR and offers potential strategies for predicting and enhancingORRactivity inthefuture.展开更多
Metal-free carbon-based materials offer a promising alternative to Pt-based catalysts for the oxygen reduction reaction (ORR).However,challenges persist due to its sluggish kinetics and poor acid ORR performance.Here,...Metal-free carbon-based materials offer a promising alternative to Pt-based catalysts for the oxygen reduction reaction (ORR).However,challenges persist due to its sluggish kinetics and poor acid ORR performance.Here,we introduce a novel nitrogen-doped porous carbon with rich defects sites (such as pentagons,edge and vacancy defects)(PV/HPC) via a simple etching strategy.The PV/HPC demonstrates long-term stability and exceptional catalytic activity with half-wave potential of 0.9 V and average electron transfer number of 3.98 in alkaline solution while 0.78 V and 3.78 in acidic solution,indicating its efficiency and robustness as an ORR catalyst.Additionally,it achieves a higher kinetic current density of 91.9 m A cm^(-2)at 0.8 V,which is 1.75 times that of Pt/C (52.5 mA cm^(-2)).Furthemore,it enables Al-air battery to attain a maximum power density of 487 mW cm^(-2),compared to 477 mW cm^(-2) for the Pt/C catalyst.Density functional theory (DFT) calculations elucidate that the introduction of multifunctional defects in nitrogen-doped porous carbon collectively reduces the reaction energy barrier of the departure of OH*and boosts the oxygen reduction reaction kinetics.This work presents a simple method to design durable and effective carbon-based ORR catalysts.展开更多
Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in def...Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage,leading to rapid degradation of activity.Herein,we design a van der Waals heterostructure comprised of vitamin C(VC)and defective carbon(DC)to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst.The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation,thus significantly enhancing the electrochemical durability and storage anti-aging performance.Moreover,the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR.These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations.It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up,and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent.Furthermore,the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.展开更多
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat...Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.展开更多
Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cath...Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cathode,the oxygen reduction reaction(ORR)relies heavily on Pt-based catalysts,where PtM_(x)(M stands for transition metal)intermetallic compounds(IMCs)are considered the best choice to enhance the catalytic activity.However,problems such as inadequate catalytic activity,high cost,and insufficient durability,etc.still hamper its commercialization.The optimizations of the catalyst structure,the improvements in the preparation process,and the understanding of the reaction mechanism are of great value.The developments of cathodic oxygen reduction catalysts for PEMFCs will also focus on improving the catalytic activity of intermetallic compound nanoparticles,the utilization rate,and the durability of Pt.Controlling the particle size and particle/carrier interaction remain key issues for future research.The catalyst reaction mechanism,the surface changes of the nanoparticles of Pt(111)face before and after the catalytic reaction,and the targeted regulation of the adsorption strength between the IMCs and oxygen-containing intermediates adjusted by transition metals need to be investigated more specifically and directly.At the application level,the expression of catalyst properties in the catalyst membrane electrode and reactor are the keys to the performance of PEMFCs.Therefore,researches on PEMFCs are still systematic works.This paper summarized the recent process toward the optimization of catalyst preparation,the exploration of new catalysts,and the new understanding of the mechanism.Given the reference to the development of PEMFCs,future research can start from the existing problems,solve the shortcomings of the catalyst,and promote the practical application of PEMFCs.展开更多
The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availa...The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availability of platinum have driven the search for alternative catalysts.While FeN4 single-atom catalysts have shown promising potential,their ORR activity needs to be further enhanced.In contrast,dual-atom catalysts(DACs)offer not only higher metal loading but also the ability to break the ORR scaling relations.However,the diverse local structures and tunable coordination environments of DACs create a vast chemical space,making large-scale computational screening challenging.In this study,we developed a graph neural network(GNN)-based framework to predict the ORR activity of Fe-based DACs,effectively addressing the challenges posed by variations in local catalyst structures.Our model,trained on a dataset of 180 catalysts,accurately predicted the Gibbs free energy of ORR intermediates and overpotentials,and identified 32 DACs with superior catalytic activity compared to FeN4 SAC.This approach not only advances the design of high-performance DACs,but also offers a powerful computational tool that can significantly reduce the time and cost of catalyst development,thereby accelerating the commercialization of fuel cell technologies.展开更多
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr...Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.展开更多
We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuP...We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells.展开更多
Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaini...Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaining recognition as promising alternatives due to their potential for high activity.However,enhancing its activity of AuSAA clusters remains challenging due to limited insights into its actual active site in alkaline environments.Herein,we studied a variety of Au_(54)M_(1) SAA cluster catalysts and revealed the operando formed MO_(x)(OH)_(y) complex acts as the crucial active site for catalyzing the ORR under the basic solution condition.The observed volcano plot indicates that Au_(54)Co_(1),Au_(54)M_(1),and Au_(54)Ru_(1) clusters can be the optimal Au_(54)M_(1) SAA cluster catalysts for the ORR.Our findings offer new insights into the actual active sites of AuSAA cluster catalysts,which will inform rational catalyst design in experimental settings.展开更多
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o...Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.展开更多
The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their perform...The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.展开更多
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ...N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production.展开更多
The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of...The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of FeN_(4)has an essential impact on the catalytic performance.Herein,we construct a sulfur-modified Fe-N-C catalyst with controllable local coordination environment,where the Fe is coordinated with four in-plane N and an axial external S.The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN_(4)active site.The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons.With the above characteristics,the adsorption and desorption of the reactants at FeN_(4)active sites are optimized,thus promoting the oxygen reduction reaction activity.This work explores the key point in electronic configuration and coordination environment tuning of FeN_(4)through S doping and provides new insight into the construction of M-N-C-based oxygen reduction reaction catalysts.展开更多
A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo...A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.展开更多
The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray...The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersion spectroscopy (EDS) as well as scanning electron microscopy (SEM) and electrochemical techniques. The results show that more Ag and Mn species present on the surface of the Ag-MnOx/C composite prepared by two-step route (Ag-MnOx/C-2) compared to the one prepared by one-step route (Ag-MnOx/C-1), which contributes to its superior activity toward the ORR. The higher electron transfer number involved in the ORR can be observed on the Ag-MnOx/C-2 composite and its specific mass kinetic current at -0.6 V (vs Hg/HgO) is 46 mA/μg, which is 23 times that on the Ag/C. The peak power density of zinc-air battery with the Ag-MnOx/C-2 air electrode reaches up to 117 mW/cm^2.展开更多
A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect o...A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect of heat treatment temperature and flowing of nitrogen gas were investigated. A catalyst with the highest activity can be obtained at 700 ℃. Mn(Ⅱ) ion was changed to MnO in heat treatment, which improved the catalytic activity of the catalyst. Hexamethylenetetramine takes part in the formation of active site of the catalyst as its decomposed gases. The flowing of protective gas takes the decomposed gases out of the tube furnace and brings negative effect on the catalytic activity of the MnHMTA/C catalyst.展开更多
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Numbers:2021A1515110245,2022A1515140108,2023B1515040013National Youth Top-notch Talent Support Program,Grant/Award Number:x2qsA4210090+5 种基金Guangzhou Key Research and Development Program,Grant/Award Number:SL2022B03J01256Guangdong Provincial Key Laboratory of Distributed Energy Systems,Grant/Award Number:2020B1212060075Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes,Grant/Award Number:2016GCZX009State Key Laboratory of Pulp and Paper Engineering,Grant/Award Numbers:202215,2022PY02Key projects of social science and technology development in Dongguan,Grant/Award Number:20231800936352National Natural Science Foundation of China,Grant/Award Numbers:21736003,21905044,31971614,32071714。
文摘Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.
文摘To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.
基金financial support from the“Hundred Talents Program”of the Chinese Academy of Sciencesthe“Young Talents Training Program”of the Shanghai Branch of the Chinese Academy of Sciences+3 种基金the financial support from the Xiamen City Natural Science Foundation of China(3502Z20227085,3502Z20227256)the National Science Youth Foundation of China(22202205)the Fujian Provincial Natural Science Foundation of China(2022J01502)Open Source Foundation of State Key Laboratory of Structural Chemistry。
文摘Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(4)moiety with different chemical/spin states(e.g.D1,D2,D3)to ORR are unclear since various states coexist inevitably.In the present work,Fe-N-C core-shell nanocatalyst with single lowspin Fe(Ⅱ)-N_(4)species(D1)is synthesized and identified with ex-situ ultralow temperature Mossbauer spectroscopy(T=1.6 K)that could essentially differentiate various Fe-N_(4)states and invisible Fe-O species.By quantifying with CO-pulse chemisorption,site density and turnover frequency of Fe-N-C catalysts reach 2.4×10^(-9)site g^(-1)and 23 e site~(-1)s^(-1)during the ORR,respectively.Half-wave potential(0.915V_(RHE))of the Fe-N-C catalyst is more positive(approximately 54 mV)than that of Pt/C.Moreover,we observe that the performance of PEMFCs on Fe-N-C almost achieves the 2025 target of the US Department of Energy by demonstrating a current density of 1.037 A cm^(-2)combined with the peak power density of 0,685 W cm^(-2),suggesting the critical role of Fe(Ⅱ)-N_(4)site(D1).After 500 h of running,PEMFCs still deliver a power density of 1.26 W cm^(-2)at 1.0 bar H_(2)-O_(2),An unexpected rate-determining step is figured out by isotopic labelling experiment and theoretical calculation.This work not only offers valuable insights regarding the intrinsic contribution of Fe-N_(4)with a single spin state to alkaline/acidic ORR,but also provides great opportunities for developing high-performance stable PEMFCs.
基金supported by the National Natural Science Foundation of China(no.22372154,21972131).
文摘Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte solution cannot be ignored.Consequently,we have systematically investigated the impact of adsorbate species and concentration,as well as solution pH,on the ORR activity on Pt(111)and Pt(poly)electrodes.The results all tend to establish a linear quantitative relationship between the onset potential for ORR and the adsorption equilibrium potential of the adsorbate.This finding indicates the decisive role of adsorbates in the onset potential for ORR,suggesting that the adsorption potential of adsorbates can serve as an intuitive criterion for ORR activity.Additional support for this conclusion is derived from experimental results obtained from the oxygen evolution reaction on Pt(poly)with different adsorbate species and from the hydrogen evolution reaction on Pt(111)with iodine adsorption.We further propose both an empirical equation for the onset potential for ORR and the concept of a potential-regulated adsor-bate shielding effect to elucidate the influence of adsorbates on ORR activity.This study provides new insights into the high onset overpotential of the ORR and offers potential strategies for predicting and enhancingORRactivity inthefuture.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China (U20A20280)the Joint Funds of the National Natural Science Foundation of China(U22A20170)。
文摘Metal-free carbon-based materials offer a promising alternative to Pt-based catalysts for the oxygen reduction reaction (ORR).However,challenges persist due to its sluggish kinetics and poor acid ORR performance.Here,we introduce a novel nitrogen-doped porous carbon with rich defects sites (such as pentagons,edge and vacancy defects)(PV/HPC) via a simple etching strategy.The PV/HPC demonstrates long-term stability and exceptional catalytic activity with half-wave potential of 0.9 V and average electron transfer number of 3.98 in alkaline solution while 0.78 V and 3.78 in acidic solution,indicating its efficiency and robustness as an ORR catalyst.Additionally,it achieves a higher kinetic current density of 91.9 m A cm^(-2)at 0.8 V,which is 1.75 times that of Pt/C (52.5 mA cm^(-2)).Furthemore,it enables Al-air battery to attain a maximum power density of 487 mW cm^(-2),compared to 477 mW cm^(-2) for the Pt/C catalyst.Density functional theory (DFT) calculations elucidate that the introduction of multifunctional defects in nitrogen-doped porous carbon collectively reduces the reaction energy barrier of the departure of OH*and boosts the oxygen reduction reaction kinetics.This work presents a simple method to design durable and effective carbon-based ORR catalysts.
基金financially supported by the National Natural Science Foundation of China (51874197)the Natural Science Foundation of Shanghai (21ZR1429400,22ZR1429700)。
文摘Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage,leading to rapid degradation of activity.Herein,we design a van der Waals heterostructure comprised of vitamin C(VC)and defective carbon(DC)to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst.The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation,thus significantly enhancing the electrochemical durability and storage anti-aging performance.Moreover,the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR.These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations.It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up,and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent.Furthermore,the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.
基金financially supported by the National Key R&D Program of China(2022YFB4004100)the National Natural Science Foundation of China(22272161)+6 种基金the Jilin Province Science and Technology Development Program(20230101367JC)financially supported by the National Natural Science Foundation of China(22073094)the Science and Technology Development Program of Jilin Province(20210402059GH)the Science and Technology Plan Projects of Yunnan Province(202101BC070001–007)the Major Science and Technology Projects for Independent Innovation of China FAW Group Co.,Ltd(20220301018GX)the essential support of the Network and Computing Center,CIAC,CASthe Computing Center of Jilin Province。
文摘Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.
基金supported by the National Key Research and Development Program of China(2022YFB4004100)National Natural Science Foundation of China(U22A20396,22209168)Natural Science Foundation of Anhui Province(2208085UD04)。
文摘Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cathode,the oxygen reduction reaction(ORR)relies heavily on Pt-based catalysts,where PtM_(x)(M stands for transition metal)intermetallic compounds(IMCs)are considered the best choice to enhance the catalytic activity.However,problems such as inadequate catalytic activity,high cost,and insufficient durability,etc.still hamper its commercialization.The optimizations of the catalyst structure,the improvements in the preparation process,and the understanding of the reaction mechanism are of great value.The developments of cathodic oxygen reduction catalysts for PEMFCs will also focus on improving the catalytic activity of intermetallic compound nanoparticles,the utilization rate,and the durability of Pt.Controlling the particle size and particle/carrier interaction remain key issues for future research.The catalyst reaction mechanism,the surface changes of the nanoparticles of Pt(111)face before and after the catalytic reaction,and the targeted regulation of the adsorption strength between the IMCs and oxygen-containing intermediates adjusted by transition metals need to be investigated more specifically and directly.At the application level,the expression of catalyst properties in the catalyst membrane electrode and reactor are the keys to the performance of PEMFCs.Therefore,researches on PEMFCs are still systematic works.This paper summarized the recent process toward the optimization of catalyst preparation,the exploration of new catalysts,and the new understanding of the mechanism.Given the reference to the development of PEMFCs,future research can start from the existing problems,solve the shortcomings of the catalyst,and promote the practical application of PEMFCs.
基金This work was supported by the National Natural Science Foundation of China(No.22473001)the Natural Science Funds for Distinguished Young Scholar of Anhui Province(1908085J08)the University An-nual Scientific Research Plan of Anhui Province(2022AH010013).
文摘The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availability of platinum have driven the search for alternative catalysts.While FeN4 single-atom catalysts have shown promising potential,their ORR activity needs to be further enhanced.In contrast,dual-atom catalysts(DACs)offer not only higher metal loading but also the ability to break the ORR scaling relations.However,the diverse local structures and tunable coordination environments of DACs create a vast chemical space,making large-scale computational screening challenging.In this study,we developed a graph neural network(GNN)-based framework to predict the ORR activity of Fe-based DACs,effectively addressing the challenges posed by variations in local catalyst structures.Our model,trained on a dataset of 180 catalysts,accurately predicted the Gibbs free energy of ORR intermediates and overpotentials,and identified 32 DACs with superior catalytic activity compared to FeN4 SAC.This approach not only advances the design of high-performance DACs,but also offers a powerful computational tool that can significantly reduce the time and cost of catalyst development,thereby accelerating the commercialization of fuel cell technologies.
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.
基金Funded by the National Natural Science Foundation of China(No.51521061)and“111”Project(No.B08040)。
文摘We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells.
文摘Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaining recognition as promising alternatives due to their potential for high activity.However,enhancing its activity of AuSAA clusters remains challenging due to limited insights into its actual active site in alkaline environments.Herein,we studied a variety of Au_(54)M_(1) SAA cluster catalysts and revealed the operando formed MO_(x)(OH)_(y) complex acts as the crucial active site for catalyzing the ORR under the basic solution condition.The observed volcano plot indicates that Au_(54)Co_(1),Au_(54)M_(1),and Au_(54)Ru_(1) clusters can be the optimal Au_(54)M_(1) SAA cluster catalysts for the ORR.Our findings offer new insights into the actual active sites of AuSAA cluster catalysts,which will inform rational catalyst design in experimental settings.
基金supported by the National Natural Science Foundation of China (12241502,52002367)the Fundamental Research Funds for the Central Universities (20720220010)the National Key Research and Development Program of China (2019YFA0405602)。
文摘Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.
基金financially National Natural Science Foundation of China (22288102, 22172134, U1932201, U2032202)Science and Technology Planning Project of Fujian Province (2022H0002)support from the EPSRC (EP/W03784X/1)。
文摘The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.
基金We acknowledge the National Natural Science Foundation of China(No.22275134)for fi nancial support.
文摘N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0715000)the National Natural Science Foundation of China(Grant No.52127816)+2 种基金supported by the U.S.Department of Energy(DOE),Office of Energy Efficiency and Renewable Energy,Vehicle Technologies Officethe DOE Office of Science by UChicago Argonne LLC under contract no.DE-AC02-06CH11357the Advanced Photon Source(APS),a U.S.Department of Energy(DOE)Office of Science User Facility,operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
文摘The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of FeN_(4)has an essential impact on the catalytic performance.Herein,we construct a sulfur-modified Fe-N-C catalyst with controllable local coordination environment,where the Fe is coordinated with four in-plane N and an axial external S.The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN_(4)active site.The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons.With the above characteristics,the adsorption and desorption of the reactants at FeN_(4)active sites are optimized,thus promoting the oxygen reduction reaction activity.This work explores the key point in electronic configuration and coordination environment tuning of FeN_(4)through S doping and provides new insight into the construction of M-N-C-based oxygen reduction reaction catalysts.
文摘A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersion spectroscopy (EDS) as well as scanning electron microscopy (SEM) and electrochemical techniques. The results show that more Ag and Mn species present on the surface of the Ag-MnOx/C composite prepared by two-step route (Ag-MnOx/C-2) compared to the one prepared by one-step route (Ag-MnOx/C-1), which contributes to its superior activity toward the ORR. The higher electron transfer number involved in the ORR can be observed on the Ag-MnOx/C-2 composite and its specific mass kinetic current at -0.6 V (vs Hg/HgO) is 46 mA/μg, which is 23 times that on the Ag/C. The peak power density of zinc-air battery with the Ag-MnOx/C-2 air electrode reaches up to 117 mW/cm^2.
文摘A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect of heat treatment temperature and flowing of nitrogen gas were investigated. A catalyst with the highest activity can be obtained at 700 ℃. Mn(Ⅱ) ion was changed to MnO in heat treatment, which improved the catalytic activity of the catalyst. Hexamethylenetetramine takes part in the formation of active site of the catalyst as its decomposed gases. The flowing of protective gas takes the decomposed gases out of the tube furnace and brings negative effect on the catalytic activity of the MnHMTA/C catalyst.