Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bi...Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.展开更多
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring...The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.展开更多
Magnesium hydroxide(Mg(OH)2)has been considered as a potential solvent for CO2 removal of coal-fired power plant and biomass gas.The chemistry action and mass to transfer mechanism of CO2-H2O-Mg(OH)2 system in a slurr...Magnesium hydroxide(Mg(OH)2)has been considered as a potential solvent for CO2 removal of coal-fired power plant and biomass gas.The chemistry action and mass to transfer mechanism of CO2-H2O-Mg(OH)2 system in a slurry bubble column reactor was described,and a reliable computational model was developed.The overall mass transfer coefficient and surface area per unit volume were obtained using experimental approach and simulation with software assistance.The results show that the mass transfer process of CO2 absorbed by Mg(OH)2 slurry is mainly liquid-controlled,and slurry concentration and temperature are main contributory factors of volumetric mass transfer coefficient and liquid side mass transfer coefficient.High concentration of CO2 has an adverse effect on its absorption because it leads to the fast deposition of MgCO3·3H2O crystals on the surfaces of unreacted Mg(OH)2 particles,reducing the utilization ratio of magnesium hydroxide.Meanwhile,high CO3^2– ion concentration limits the dissolution of MgCO3 to absorb CO2 continually.Concentration of 0.05 mol/L Mg(OH)2,15%vol CO2 gas and operation temperature at 35℃are recommended for this CO2 capture system.展开更多
As the scale of residual oil treatment increases and cleaner production improves in China,slurry bubble column reactors face many challenges and opportunities for residual oil hydrogenation technology.The internals de...As the scale of residual oil treatment increases and cleaner production improves in China,slurry bubble column reactors face many challenges and opportunities for residual oil hydrogenation technology.The internals development is critical to adapt the long-term stable operation.In this paper,the volumetric mass transfer coefficient,gas holdup and bubble size in a gas-liquid up-flow column are studied with two kinds of internals.The gas holdup and volumetric mass transfer coefficient increase by 120% and 42% when the fractal dimension of bubbles increases from 0.56 to 2.56,respectively.The enhanced mass transfer processing may improve the coke suppression ability in the slurry reactor for residual oil treatment.The results can be useful for the exploration of reacting conditions,scale-up strategies,and oil adaptability.This work is valuable for the design of reactor systems and technological processes.展开更多
The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly...The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data.展开更多
Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A mode...Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.展开更多
The equilibrium solubilities,volumetric gas-liquid mass transfer coefficients kLa of H_2 and CO were measured as functions of temperature(298―513 K),pressure(1―3 MPa),superficial gas velocity(0.5―3 cm/s) and solid ...The equilibrium solubilities,volumetric gas-liquid mass transfer coefficients kLa of H_2 and CO were measured as functions of temperature(298―513 K),pressure(1―3 MPa),superficial gas velocity(0.5―3 cm/s) and solid volume fraction(5%―25%) in liquid paraffin/iron-based catalyst slurry bubble column reactor.The volumetric mass transfer coefficients kLa were obtained by measuring the dissolution rate of H_2 and CO.The influences of the operation conditions,such as pressure,temperature,superficial gas velocity and catalyst concentration on kLa,were investigated.Two empirical correlations were proposed to predict kLa values of H_2 and CO in liquid paraffin/solid particles slurry bubble column reactor.The results showed that the equilibrium solubilities of H-2 and CO increased with an increasing temperature and pressure,and the solubility of CO was greater than that for H_2.It was found that the equilibrium solubility can be expressed by Henry's law.The volumetric mass transfer coefficients of H_2 and CO were of the same order of magnitude,and increased with the increase of pressure,temperature and superficial gas velocity.The presence of solid particles decreased kLa values of both H_2 and CO.展开更多
The effect of different surfactants(n-octyltrimethylammonium bromide(OTABr),sodium dodecyl benzene sulfonate(SDBS) and Tween 80) with different critical micelle concentrations(CMC) on the CO_2 absorption into aqueous ...The effect of different surfactants(n-octyltrimethylammonium bromide(OTABr),sodium dodecyl benzene sulfonate(SDBS) and Tween 80) with different critical micelle concentrations(CMC) on the CO_2 absorption into aqueous solutions in a bubble column is analyzed in the present work.The presence of these surfactants increased the gas-liquid interfacial area,and decreased the liquid phase mass transfer coefficient,but with significant different extent.The results indicated that the CMC can be a key parameter affecting the mass transfer of CO_2 absorption into a dilute aqueous solution of a surfactant.Sardeing's model was used to fit the experimental data successfully by re-correlating the parameters.展开更多
The understanding of ozonation in bubble columns is the first step to describe this process for organic and inorganic pollutants in water medium in this equipment.This paper developed mathematical models for decomposi...The understanding of ozonation in bubble columns is the first step to describe this process for organic and inorganic pollutants in water medium in this equipment.This paper developed mathematical models for decomposition of ozone in liquid phase,with analytical solution for zero,first and second-orders kinetics for different pH values,with and without gaseous phase mass transfer effect in the ozone transfer to the liquid phase.The results models are satisfactory when compared with experimental data,and indicate the importance to consider such effects.展开更多
The volumetric overall mass transfer coefficients in a multistage column have been measured using axial dispersion model for toluene–acetone–water system. The effect of operating parameters on the volumetric overall...The volumetric overall mass transfer coefficients in a multistage column have been measured using axial dispersion model for toluene–acetone–water system. The effect of operating parameters on the volumetric overall mass transfer coefficients has been investigated for both mass transfer directions. The results show that the mass transfer performance is strongly dependent on rotor speed and mass transfer direction, although only slightly dependent on phase flow rates. In addition, empirical correlations to predict the overall mass transfer coefficients have been developed. The proposed correlations based on dimensionless numbers can be considered as a useful tool for the possible scale up of the multistage column extractor.展开更多
The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or mic...The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.展开更多
It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a ...It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism.In this work,experiments,models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid.The experimental setups,measurement methods,the mass transfer of single bubbles in the Newtonian and the nonNewtonian liquid,models derived from the concept of eddy diffusion,the extension of Whitman’s,Higbie’s and Danckwerts’models,or dimensionless numbers,and simulation methods on turbulence,gas–liquid partition methods and mass transfer source term determination are introduced and commented on.Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions,it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence,contamination or non-Newtonian behavior.Additional studies on single bubbles are required for experiments and models in various liquid conditions in future.展开更多
Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass ...Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.展开更多
Heat transfer and bubble phenomena were investigated by adopting the drift flux model in a viscous slurry bubble column reactor (SBCR), having a diameter of 0.0508 m(ID) and height 1.5 m. The effects of superficial ga...Heat transfer and bubble phenomena were investigated by adopting the drift flux model in a viscous slurry bubble column reactor (SBCR), having a diameter of 0.0508 m(ID) and height 1.5 m. The effects of superficial gas velocity (0.002 -0.164 m/s), solid concentration (0 - 20 wt%) and liquid viscosity (paraffin oil;16.9 mPa•s and squalane;25.9 mPa•s) on the gas holdup and heat transfer characteristics were examined. It was observed that the gas holdup increased with increasing superficial gas velocity (UG), but decreased with increasing solid concentration (SC) or slurry viscosity. The degree of non-uniformity in a SBCR could be determined by the modified drift flux model at the heterogeneous flow regime. The local heat transfer coefficient (h) between the immersed heater and the bed decreased with increasing liquid viscosity and SC, but it increased with increasing UG. The modified Nusselt number including the gas holdup and local heat transfer coefficient was well correlated in terms of dimensionless groups such as Reynolds and Prandtl numbers.展开更多
The axial mixing is a key factor for design and scaling up of the pulsed extraction column which has strong influence on the mass transfer performances of the pulsed extraction column with discs and doughnuts. A stead...The axial mixing is a key factor for design and scaling up of the pulsed extraction column which has strong influence on the mass transfer performances of the pulsed extraction column with discs and doughnuts. A steady-state concentration profile measurement was used to evaluate the mass transfer and axial mixing coefficients for the nitric acid/water/30%TRPO (in kerosene) system in the pulsed extraction column with the diameter of 38 mm on the condition of the TRPO-kerosene solution as the continuous phase and the flow ratio of 1∶1. Experimental results indicate that Ey evaluated by the experiments is in good agreement with that given by Burratti’s correlation; the axial mixing is far smaller for the continuous phase than that for the dispersed phase. However the empirical correlation for HOX is only given based on the present data.展开更多
文摘Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.
基金the National Natural Science Foundation of China (No. 29870619).
文摘The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.
基金Project(21878338)supported by the National Natural Science Foundation of ChinaProject(2015BAL04B02)supported by the National key Technology R&D Program of China+1 种基金Project(2018K2038)supported by the key Research and Development Project of Hunan Province,ChinaProject supported by Hunan Collaborative Innovation Center of Building Energy Conservation&Environmental Control,China
文摘Magnesium hydroxide(Mg(OH)2)has been considered as a potential solvent for CO2 removal of coal-fired power plant and biomass gas.The chemistry action and mass to transfer mechanism of CO2-H2O-Mg(OH)2 system in a slurry bubble column reactor was described,and a reliable computational model was developed.The overall mass transfer coefficient and surface area per unit volume were obtained using experimental approach and simulation with software assistance.The results show that the mass transfer process of CO2 absorbed by Mg(OH)2 slurry is mainly liquid-controlled,and slurry concentration and temperature are main contributory factors of volumetric mass transfer coefficient and liquid side mass transfer coefficient.High concentration of CO2 has an adverse effect on its absorption because it leads to the fast deposition of MgCO3·3H2O crystals on the surfaces of unreacted Mg(OH)2 particles,reducing the utilization ratio of magnesium hydroxide.Meanwhile,high CO3^2– ion concentration limits the dissolution of MgCO3 to absorb CO2 continually.Concentration of 0.05 mol/L Mg(OH)2,15%vol CO2 gas and operation temperature at 35℃are recommended for this CO2 capture system.
基金the National Natural Science Foundation of China(51678238,51722806,51608325,21908057)National Key R&D Program of China(2018YFC1802704,2018YFC1801904)+1 种基金China Postdoctoral Science Foundation funded project(2018M641942)Shanghai Sailing Program(19YF1411800)for financial support.
文摘As the scale of residual oil treatment increases and cleaner production improves in China,slurry bubble column reactors face many challenges and opportunities for residual oil hydrogenation technology.The internals development is critical to adapt the long-term stable operation.In this paper,the volumetric mass transfer coefficient,gas holdup and bubble size in a gas-liquid up-flow column are studied with two kinds of internals.The gas holdup and volumetric mass transfer coefficient increase by 120% and 42% when the fractal dimension of bubbles increases from 0.56 to 2.56,respectively.The enhanced mass transfer processing may improve the coke suppression ability in the slurry reactor for residual oil treatment.The results can be useful for the exploration of reacting conditions,scale-up strategies,and oil adaptability.This work is valuable for the design of reactor systems and technological processes.
基金financially supported by the National Key Research and Development Program of China (2020YFA0210900)the National Natural Science Foundation of China (21938001 and 21878344)+1 种基金Guangdong Provincial Key Research and Development Programme (2019B110206002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C102)。
文摘The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data.
基金Supported by the National Natural Science Foundation of China.
文摘Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.
基金financial supported by the National High Technology Research and Development Program of China (863 Program 2011AA05A204)
文摘The equilibrium solubilities,volumetric gas-liquid mass transfer coefficients kLa of H_2 and CO were measured as functions of temperature(298―513 K),pressure(1―3 MPa),superficial gas velocity(0.5―3 cm/s) and solid volume fraction(5%―25%) in liquid paraffin/iron-based catalyst slurry bubble column reactor.The volumetric mass transfer coefficients kLa were obtained by measuring the dissolution rate of H_2 and CO.The influences of the operation conditions,such as pressure,temperature,superficial gas velocity and catalyst concentration on kLa,were investigated.Two empirical correlations were proposed to predict kLa values of H_2 and CO in liquid paraffin/solid particles slurry bubble column reactor.The results showed that the equilibrium solubilities of H-2 and CO increased with an increasing temperature and pressure,and the solubility of CO was greater than that for H_2.It was found that the equilibrium solubility can be expressed by Henry's law.The volumetric mass transfer coefficients of H_2 and CO were of the same order of magnitude,and increased with the increase of pressure,temperature and superficial gas velocity.The presence of solid particles decreased kLa values of both H_2 and CO.
基金Supported by the National Natural Science Foundation of China(20736005)
文摘The effect of different surfactants(n-octyltrimethylammonium bromide(OTABr),sodium dodecyl benzene sulfonate(SDBS) and Tween 80) with different critical micelle concentrations(CMC) on the CO_2 absorption into aqueous solutions in a bubble column is analyzed in the present work.The presence of these surfactants increased the gas-liquid interfacial area,and decreased the liquid phase mass transfer coefficient,but with significant different extent.The results indicated that the CMC can be a key parameter affecting the mass transfer of CO_2 absorption into a dilute aqueous solution of a surfactant.Sardeing's model was used to fit the experimental data successfully by re-correlating the parameters.
文摘The understanding of ozonation in bubble columns is the first step to describe this process for organic and inorganic pollutants in water medium in this equipment.This paper developed mathematical models for decomposition of ozone in liquid phase,with analytical solution for zero,first and second-orders kinetics for different pH values,with and without gaseous phase mass transfer effect in the ozone transfer to the liquid phase.The results models are satisfactory when compared with experimental data,and indicate the importance to consider such effects.
文摘The volumetric overall mass transfer coefficients in a multistage column have been measured using axial dispersion model for toluene–acetone–water system. The effect of operating parameters on the volumetric overall mass transfer coefficients has been investigated for both mass transfer directions. The results show that the mass transfer performance is strongly dependent on rotor speed and mass transfer direction, although only slightly dependent on phase flow rates. In addition, empirical correlations to predict the overall mass transfer coefficients have been developed. The proposed correlations based on dimensionless numbers can be considered as a useful tool for the possible scale up of the multistage column extractor.
基金financial support from National Natural Science Foundation of China(22108263)Shanxi Province Basic Research Program Project(20210302124060)the 18th Graduate Student Technology Project of North University of China(20221824).
文摘The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.
基金supported by the National Key Research&Development Program of China(2017YFB0306703)the National Natural Science Foundation of China(No.21676007)the Fundamental Research Funds for the Central Universities(XK1802-1)。
文摘It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism.In this work,experiments,models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid.The experimental setups,measurement methods,the mass transfer of single bubbles in the Newtonian and the nonNewtonian liquid,models derived from the concept of eddy diffusion,the extension of Whitman’s,Higbie’s and Danckwerts’models,or dimensionless numbers,and simulation methods on turbulence,gas–liquid partition methods and mass transfer source term determination are introduced and commented on.Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions,it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence,contamination or non-Newtonian behavior.Additional studies on single bubbles are required for experiments and models in various liquid conditions in future.
文摘Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.
文摘Heat transfer and bubble phenomena were investigated by adopting the drift flux model in a viscous slurry bubble column reactor (SBCR), having a diameter of 0.0508 m(ID) and height 1.5 m. The effects of superficial gas velocity (0.002 -0.164 m/s), solid concentration (0 - 20 wt%) and liquid viscosity (paraffin oil;16.9 mPa•s and squalane;25.9 mPa•s) on the gas holdup and heat transfer characteristics were examined. It was observed that the gas holdup increased with increasing superficial gas velocity (UG), but decreased with increasing solid concentration (SC) or slurry viscosity. The degree of non-uniformity in a SBCR could be determined by the modified drift flux model at the heterogeneous flow regime. The local heat transfer coefficient (h) between the immersed heater and the bed decreased with increasing liquid viscosity and SC, but it increased with increasing UG. The modified Nusselt number including the gas holdup and local heat transfer coefficient was well correlated in terms of dimensionless groups such as Reynolds and Prandtl numbers.
文摘The axial mixing is a key factor for design and scaling up of the pulsed extraction column which has strong influence on the mass transfer performances of the pulsed extraction column with discs and doughnuts. A steady-state concentration profile measurement was used to evaluate the mass transfer and axial mixing coefficients for the nitric acid/water/30%TRPO (in kerosene) system in the pulsed extraction column with the diameter of 38 mm on the condition of the TRPO-kerosene solution as the continuous phase and the flow ratio of 1∶1. Experimental results indicate that Ey evaluated by the experiments is in good agreement with that given by Burratti’s correlation; the axial mixing is far smaller for the continuous phase than that for the dispersed phase. However the empirical correlation for HOX is only given based on the present data.