An updated version of the Regional Acid Deposition Model(RADM)driven by meteorological fields derived from Chinese Regional Climate Model(CRegCM)is used to simulate seasonal variation of tropospheric ozone over the ea...An updated version of the Regional Acid Deposition Model(RADM)driven by meteorological fields derived from Chinese Regional Climate Model(CRegCM)is used to simulate seasonal variation of tropospheric ozone over the eastern China.The results show that: (1)Peak O_3 concentration moves from south China to north China responding to the changing of solar perpendicular incidence point from south to north.When solar perpendicular incidence point moves from north to south,so does the peak O_3 concentration. (2)In the eastern China.the highest O_3 month-average concentration appears in July.the lowest in January and the medium in April and October.The pattern mainly depends on the solar radiation,the concentration of O_3 precursors NO_x and NMHC and the ratio of NMHC/NO_x. (3)Daily variations of O_3 over the eastern China are clear.Namely,O_3 concentrations rise with the sun rising and the maximums appear at noon.then O_3 concentrations decrease.The highest daily variation range of O_3 appears in summer(40×10^(-9) in volume fraction)and the lowest in winter(20× 10^(-9) in volume fraction). (4)Daily variations of O_3 over the western China are not clear.The daily variation range of O_3 is less than 10×10^(-9) in volume fraction.展开更多
Based on sediment and discharge flux data for the Yellow River, realistic forcing fields and bathymetry of the Bohai Sea, a suspended sediment transport module is driven by a wave-current coupled model to research sea...Based on sediment and discharge flux data for the Yellow River, realistic forcing fields and bathymetry of the Bohai Sea, a suspended sediment transport module is driven by a wave-current coupled model to research seasonal variations and mechanisms of sus- pended load transport to the Bohai Sea. It could be concluded that surface sediment concentration indicates a distinct spatial distribution characteristic that varies seasonally in the Bohai Sea. Sediment concentration is rather high near the Yellow River estuary, seasonal variations of which are controlled by quantity of sediment from the YeUow River, suspended sediment concentration reaches its maximum during summer and fall. Furthermore, sediment concentration decreases rapidly in other seas far from the Yellow River estuary and maintains a very low level in the center of the Bohai Sea, and is dominated by seasonal variations of climatology wind field in the Bohai Sea. Only a small amount of sediments imported from the Yellow River are delivered northwestward to the southern coast of the Bohai Bay. Majority of sediments are transported southeastward to the Laizhou Bay, where sediments are con- tinuously delivered into the center of the Bohai Sea in a northeastward direction, and part of them are transported eastward alongshore through the Bohai Strait. 69% of sediments from the Yellow River are deposited near the river delta, 31% conveyed seaward, within which, 4% exported to the northern Yellow Sea through the Bohai Strait. Wind wave is the most essential contributor to seasonal variations of sediment concentration in the Bohai Sea, and the contribution of tidal currents is also significant in shallow waters when wind speed is low.展开更多
文摘An updated version of the Regional Acid Deposition Model(RADM)driven by meteorological fields derived from Chinese Regional Climate Model(CRegCM)is used to simulate seasonal variation of tropospheric ozone over the eastern China.The results show that: (1)Peak O_3 concentration moves from south China to north China responding to the changing of solar perpendicular incidence point from south to north.When solar perpendicular incidence point moves from north to south,so does the peak O_3 concentration. (2)In the eastern China.the highest O_3 month-average concentration appears in July.the lowest in January and the medium in April and October.The pattern mainly depends on the solar radiation,the concentration of O_3 precursors NO_x and NMHC and the ratio of NMHC/NO_x. (3)Daily variations of O_3 over the eastern China are clear.Namely,O_3 concentrations rise with the sun rising and the maximums appear at noon.then O_3 concentrations decrease.The highest daily variation range of O_3 appears in summer(40×10^(-9) in volume fraction)and the lowest in winter(20× 10^(-9) in volume fraction). (4)Daily variations of O_3 over the western China are not clear.The daily variation range of O_3 is less than 10×10^(-9) in volume fraction.
基金National Natural Science Foundation of China, No.40771030 No.40571020
文摘Based on sediment and discharge flux data for the Yellow River, realistic forcing fields and bathymetry of the Bohai Sea, a suspended sediment transport module is driven by a wave-current coupled model to research seasonal variations and mechanisms of sus- pended load transport to the Bohai Sea. It could be concluded that surface sediment concentration indicates a distinct spatial distribution characteristic that varies seasonally in the Bohai Sea. Sediment concentration is rather high near the Yellow River estuary, seasonal variations of which are controlled by quantity of sediment from the YeUow River, suspended sediment concentration reaches its maximum during summer and fall. Furthermore, sediment concentration decreases rapidly in other seas far from the Yellow River estuary and maintains a very low level in the center of the Bohai Sea, and is dominated by seasonal variations of climatology wind field in the Bohai Sea. Only a small amount of sediments imported from the Yellow River are delivered northwestward to the southern coast of the Bohai Bay. Majority of sediments are transported southeastward to the Laizhou Bay, where sediments are con- tinuously delivered into the center of the Bohai Sea in a northeastward direction, and part of them are transported eastward alongshore through the Bohai Strait. 69% of sediments from the Yellow River are deposited near the river delta, 31% conveyed seaward, within which, 4% exported to the northern Yellow Sea through the Bohai Strait. Wind wave is the most essential contributor to seasonal variations of sediment concentration in the Bohai Sea, and the contribution of tidal currents is also significant in shallow waters when wind speed is low.