In this paper, we study a class of p(x)-biharmonic equations with Navier boundary condition. Using the mountain pass theorem, fountain theorem, local linking theorem and symmetric mountain pass theorem, we establish...In this paper, we study a class of p(x)-biharmonic equations with Navier boundary condition. Using the mountain pass theorem, fountain theorem, local linking theorem and symmetric mountain pass theorem, we establish the existence of at least one solution and infinitely many solutions of this problem, respectively.展开更多
We establish some results on the existence of multiple nontrivial solutions for a class of p(x)-Lap-lacian elliptic equations without assumptions that the domain is bounded. The main tools used in the proof are the va...We establish some results on the existence of multiple nontrivial solutions for a class of p(x)-Lap-lacian elliptic equations without assumptions that the domain is bounded. The main tools used in the proof are the variable exponent theory of generalized Lebesgue-Sobolev spaces, variational methods and a variant of the Mountain Pass Lemma.展开更多
基金supported by the National Natural Science Foundation of China(11071198)Scientific Research Fund of SUSE(2011KY03)Scientific Reserch Fund of Sichuan Provincial Education Department(12ZB081)
文摘In this paper, we study a class of p(x)-biharmonic equations with Navier boundary condition. Using the mountain pass theorem, fountain theorem, local linking theorem and symmetric mountain pass theorem, we establish the existence of at least one solution and infinitely many solutions of this problem, respectively.
文摘We establish some results on the existence of multiple nontrivial solutions for a class of p(x)-Lap-lacian elliptic equations without assumptions that the domain is bounded. The main tools used in the proof are the variable exponent theory of generalized Lebesgue-Sobolev spaces, variational methods and a variant of the Mountain Pass Lemma.