The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digit...The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digital stations around China. The average model has a low P wave velocity lid (about 7.8~8.0 km·s -1 ) with thickness about 60 km, and two discontinuities with velocity jumps of 0.29 km·s -1 and 0.55 km·s -1 at depth of 410 km and 665 km respectively. In the Jungger basin, the P wave velocity of uppermost mantle is about 7.7 km·s -1 . The lid thickness (90~100 km) and velocity gradient (average gradient is greater than 0.005 5/s) are large. At the depth of 140 km the P wave velocity reaches to 8.2 km·s -1 . Near in Baikal, the lid is about 30 km thick with average P wave velocity of 8.00~8.05 km·s -1 .展开更多
The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagn...The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.展开更多
文摘The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digital stations around China. The average model has a low P wave velocity lid (about 7.8~8.0 km·s -1 ) with thickness about 60 km, and two discontinuities with velocity jumps of 0.29 km·s -1 and 0.55 km·s -1 at depth of 410 km and 665 km respectively. In the Jungger basin, the P wave velocity of uppermost mantle is about 7.7 km·s -1 . The lid thickness (90~100 km) and velocity gradient (average gradient is greater than 0.005 5/s) are large. At the depth of 140 km the P wave velocity reaches to 8.2 km·s -1 . Near in Baikal, the lid is about 30 km thick with average P wave velocity of 8.00~8.05 km·s -1 .
文摘The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.