A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b...In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.展开更多
Let L = L0 + V be the higher order Schrodiger type operator where L0 is a homogeneous elliptic operator of order 2m in divergence form with bounded coeffi- cients and V is a real measurable function as multiplication...Let L = L0 + V be the higher order Schrodiger type operator where L0 is a homogeneous elliptic operator of order 2m in divergence form with bounded coeffi- cients and V is a real measurable function as multiplication operator (e.g., including (-△)m+v (m∈N) as special examples). In this paper, assume that V satisfies a strongly subcritical form condition associated with L0, the authors attempt to establish a the- HL (R) (0 〈 p ≤ 1) associated with the higher order Schrodinger ory of Hardy space P n type operator L. Specifically, we first define the molecular Hardy space Hp (JRn) by the so-called (p, q,ε, M) molecule associated to L and then establish its characterizations by the area integral defined by the heat semigroup e-tL.展开更多
This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt...This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt)/t , z ∈ B, g ∈ H(B) and φ∈H(B, B).展开更多
This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, B...This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)展开更多
This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to ...This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.展开更多
In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatte...In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatten p-class(0〈p〈∞) Toeplitz operators on Dirichlet space D(Bn,dA) with unbounded symbols are also obtained.展开更多
The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The ind...The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The indirect boundary element method is used, combined with the Green' s function of distributed loads acting on inclined lines. It is shown that the dynamic characteristics of soil-tunnel interaction in layered half-space are different much from that in homoge- neous half-space, and that the mechanism of soil-tunnel interaction is also different much from that of soil-founda- tion-superstructure interaction. For oblique incidence, the tunnel response for in-plane incident SV-waves is com- pletely different from that for incident SH-waves, while the tunnel response for vertically incident SV-wave is very similar to that of vertically incident SH-wave.展开更多
In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hye...In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.展开更多
This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffract...This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffraction of waves. It is shown that the surface displacement amplitudes of the drained case are close to those of the undrained case, however, the surface displacement amplitudes of the dry case are very different from those of the saturated (either drained or undrained) cases. There are large phase shift between the dry case and the saturated cases, as well as slightly longer resultant wavelengths for the undrained case than those for the drained case and longer resultant wavelengths for the drained case than those for the dry case. For small porosity the surface displacement amplitudes for the saturated cases are almost identical to those for the dry case; while for large porosity, the effect of drainage condition becomes significant, and the surface displacement amplitudes for the undrained case are larger than those for the drained case. As the incident frequency increases, the effect of porosity becomes significant, and more significant for the undrained case than that for the drained case. As the porosity increases, the pore pressures increase significantly but their oscillations become smoother. As the incident frequency increases, the pore pressures become more complicated.展开更多
Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary stora...Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.展开更多
The aim of this paper is to introduce and solve the p-radical functional equation ■We also state an analogue of the fixed point theorem [12, Theorem 1] in 2-Banach spaces and investigate stability for this equation i...The aim of this paper is to introduce and solve the p-radical functional equation ■We also state an analogue of the fixed point theorem [12, Theorem 1] in 2-Banach spaces and investigate stability for this equation in 2-Banach spaces.展开更多
This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional a...This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.展开更多
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
文摘In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.
基金supported by NSFC(No.11301203)NSFC(No.11371057,11471033)+5 种基金NSFC(No.11371158)the Fundamental Research Funds for the Central Universities(CCNU-14A05037)the Fundamental Research Funds for the Central Universities(No.2014KJJCA10)SRFDP(No.20130003110003)the program for Changjiang ScholarsInnovative Research Team in University(No.IRT13066)
文摘Let L = L0 + V be the higher order Schrodiger type operator where L0 is a homogeneous elliptic operator of order 2m in divergence form with bounded coeffi- cients and V is a real measurable function as multiplication operator (e.g., including (-△)m+v (m∈N) as special examples). In this paper, assume that V satisfies a strongly subcritical form condition associated with L0, the authors attempt to establish a the- HL (R) (0 〈 p ≤ 1) associated with the higher order Schrodinger ory of Hardy space P n type operator L. Specifically, we first define the molecular Hardy space Hp (JRn) by the so-called (p, q,ε, M) molecule associated to L and then establish its characterizations by the area integral defined by the heat semigroup e-tL.
基金Supported by the NNSF of China(10771064, 11101139)Supported by the NSF of Zhejiang Province(Y7080197, Y6090036, Y6100219)Supported by the Foundation of Creative Group in Colleges and Universities of Zhejiang Province(T200924)
文摘This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt)/t , z ∈ B, g ∈ H(B) and φ∈H(B, B).
基金Supported in part by the National Natural Science Foundation of China(11271359)the Fundamental Research Funds for the Central Universities(2014-Ia-037and 2015-IVA-069)
文摘This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)
基金Supported by the National Natural Science Foundation of China (10771064)the Natural Science Foundation of Zhejiang province (Y6090036+1 种基金Y7080197,Y606197)the Foundation of Department of Education of Zhejiang Province (20070482)
文摘This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.
文摘In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatten p-class(0〈p〈∞) Toeplitz operators on Dirichlet space D(Bn,dA) with unbounded symbols are also obtained.
基金supported by the National Natural Science Foundation of China(No.51378384)the Key Project of Natural Science Foundation of Tianjin Municipality(No. 12JCZDJC29000)
文摘The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The indirect boundary element method is used, combined with the Green' s function of distributed loads acting on inclined lines. It is shown that the dynamic characteristics of soil-tunnel interaction in layered half-space are different much from that in homoge- neous half-space, and that the mechanism of soil-tunnel interaction is also different much from that of soil-founda- tion-superstructure interaction. For oblique incidence, the tunnel response for in-plane incident SV-waves is com- pletely different from that for incident SH-waves, while the tunnel response for vertically incident SV-wave is very similar to that of vertically incident SH-wave.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(NRF-2012R1A1A2004299)
文摘In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.
基金support from the Program for New Century Excellent Talents in University (NCET-05-0248)the Key Program for Applied Basic Research of Tianjin Municipality (07JCZDJC10100)
文摘This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffraction of waves. It is shown that the surface displacement amplitudes of the drained case are close to those of the undrained case, however, the surface displacement amplitudes of the dry case are very different from those of the saturated (either drained or undrained) cases. There are large phase shift between the dry case and the saturated cases, as well as slightly longer resultant wavelengths for the undrained case than those for the drained case and longer resultant wavelengths for the drained case than those for the dry case. For small porosity the surface displacement amplitudes for the saturated cases are almost identical to those for the dry case; while for large porosity, the effect of drainage condition becomes significant, and the surface displacement amplitudes for the undrained case are larger than those for the drained case. As the incident frequency increases, the effect of porosity becomes significant, and more significant for the undrained case than that for the drained case. As the porosity increases, the pore pressures increase significantly but their oscillations become smoother. As the incident frequency increases, the pore pressures become more complicated.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(Grant No.2011ZX05004003)
文摘Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.
文摘The aim of this paper is to introduce and solve the p-radical functional equation ■We also state an analogue of the fixed point theorem [12, Theorem 1] in 2-Banach spaces and investigate stability for this equation in 2-Banach spaces.
基金support from the Program for New Century Excellent Talents in University (NCET-05-0248)the Key Program for Applied Basic Research of Tianjin Municipality (07JCZDJC10100)
文摘This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.