Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.Howev...The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.However,whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood.In the current study,we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout(KO)human bronchial epithelial cells(BEAS-2B).A total of 943 active regular enhancers and 370 super-enhancers(SEs)disappeared upon the deletion of p53,indicating that p53 modulates the activity of hundreds of enhancer elements.We found that one p53-dependent SE,located on chromosome 9 and designated as KLF4-SE,regulated the expression of the Krüppel-like factor 4(KLF4)gene.Furthermore,the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression,but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model.Subsequently,in TP53 KO cells,the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency.Consistently,KLF4 expression also decreased in lung cancer tissues and cell lines.It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells.Collectively,our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function.Therefore,our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.展开更多
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi...Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs.展开更多
Neuroinflammation exacerbates secondary damage after spinal cord injury,while microglia/macrophage pyroptosis is important to neuroinflammation.Circular RNAs(circRNAs)play a role in the central nervous system.However,...Neuroinflammation exacerbates secondary damage after spinal cord injury,while microglia/macrophage pyroptosis is important to neuroinflammation.Circular RNAs(circRNAs)play a role in the central nervous system.However,the functional role and mechanism of circRNAs in regulating microglia/macrophage pyroptosis after spinal cord injury are still poorly studied.In the present study,we detected microglia/macrophage pyroptosis in a female rat model of spinal cord injury,along with upregulated levels of circ0000381 in the spinal cord.Our further experimental results suggest that circ0000381 may function as a sponge to sequester endogenous microRNA423-3p(miR-423-3p),which can increase the expression of NOD-like receptor 3(NLRP3),a pyroptosis marker.Therefore,upregulation of circ0000381 may be a compensatory change after spinal cord injury to attenuate microglia/macrophage pyroptosis.Indeed,knockdown of circ0000381 expression exacerbated microglia/macrophage pyroptosis.Collectively,our findings provide novel evidence for the upregulation of circ0000381,which may serve as a neuroprotective mechanism to attenuate microglia/macrophage pyroptosis after spinal cord injury.Accordingly,circ0000381 may be a novel therapeutic target for the treatment of spinal cord injury.展开更多
Neurodegenerative diseases are often misdiagnosed,especially when the diagnosis is based solely on clinical symptoms.The p75 neurotrophic receptor(p75^(NTR))has been studied as an index of sensory and motor nerve deve...Neurodegenerative diseases are often misdiagnosed,especially when the diagnosis is based solely on clinical symptoms.The p75 neurotrophic receptor(p75^(NTR))has been studied as an index of sensory and motor nerve development and maturation.Its cleavable extracellular domain(ECD)is readily detectable in various biological fluids including plasma,serum and urine.There is evidence for increased p75NTR ECD levels in neurodegenerative diseases such as Alzheimer’s disease,amyotrophic lateral sclerosis,age-related dementia,schizophrenia,and diabetic neuropathy.Whether p75^(NTR) ECD could be used as a biomarker for diagnosis and/or prognosis in these disorders,and whether it could potentially lead to the development of targeted therapies,remains an open question.In this review,we present and discuss published studies that have evaluated the relevance of this emerging biomarker in the context of various neurodegenerative diseases.We also highlight areas that require further investigation to better understand the role of p75^(NTR) ECD in the clinical diagnosis and management of neurodegenerative disorders.展开更多
Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target...Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target genes of miR-142-3p,which is closely related to pregnancy-related diseases.Furthermore,miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway.This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway.Methods Mouse models of normal pregnancy and abortion were constructed,and the alterations of ILC1s,miR-142-3p,ILC1 transcription factor(T-bet),and pro-inflammatory cytokines of ILC1s(TNF-α,IFN-γand IL-2)were detected in mice from different groups.The targeting regulation of HMGB1 by miR-142-3p in ILC1s,and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated.In addition,the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8,Annexin-V/PI,ELISA,and RT-PCR,respectively.Furthermore,changes of the NF-κB signaling pathway in ILC1s were examined in the different groups.For the in vivo studies,miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface,and further detect the expression of HMGB1,pro-inflammatory cytokines,and the NF-κB signaling pathway.Results The number of ILC1s was significantly increased,the level of HMGB1 was significantly upregulated,and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice(all P<0.05).In addition,miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway(P<0.05).The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group(all P<0.05).Conclusion miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway,and attenuate the inflammation at the maternal-fetal interface in abortive mice.展开更多
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
基金the National Natural Science Foundation of China(Grant No.82072580).
文摘The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.However,whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood.In the current study,we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout(KO)human bronchial epithelial cells(BEAS-2B).A total of 943 active regular enhancers and 370 super-enhancers(SEs)disappeared upon the deletion of p53,indicating that p53 modulates the activity of hundreds of enhancer elements.We found that one p53-dependent SE,located on chromosome 9 and designated as KLF4-SE,regulated the expression of the Krüppel-like factor 4(KLF4)gene.Furthermore,the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression,but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model.Subsequently,in TP53 KO cells,the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency.Consistently,KLF4 expression also decreased in lung cancer tissues and cell lines.It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells.Collectively,our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function.Therefore,our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.
基金supported by a grant from the Subway Fine Dust Reduction Technology Development Project of the Ministry of Land Infrastructure and Transport,Republic of Korea(21QPPWB152306-03)the Basic Science Research Capacity Enhancement Project through a Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education of the Republic of Korea(2019R1A6C1010016)。
文摘Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs.
文摘P53基因状态是胶质瘤精准诊疗的重要依据.针对目前基于MRI(Magnetic Resonance Imaging)的P53基因状态预测的深度学习模型中存在的异质性特征提取不全面、模型存在固有的多种不确定性等问题,提出脑胶质瘤P53基因状态精准预测模型CVT-RegNet(Improved RegNet Integrating CNN,Vision Transfomer and Truth Discovery).首先,采用RegNet网络作为P53基因突变状态预测模型的基础架构,自适应设计搜索P53基因的异质性特征;其次,在模型中将ViT(Vision Transfomer)模块与卷积神经网络(Convolutional Neural Networks,CNN)模块进行融合以改进RegNet网络,进一步优化模型的特征提取性能与计算效率;最后,融入真值发现算法进行迭代寻优以改善模型输出的不确定性,提高预测结果的准确度.实验结果表明,CVT-RegNet模型对P53突变状态的预测准确率达到95.06%,AUC(Area under Curve)得分为0.9492,优于现有的P53基因状态预测模型.CVT-RegNet实现了胶质瘤P53基因状态的无创预测,减轻了患者的经济负担及身心伤害,为胶质瘤的临床精准诊断治疗提供了重要价值.
基金supported by the National Natural Science Foundation of China,No.81901241(to YZ)。
文摘Neuroinflammation exacerbates secondary damage after spinal cord injury,while microglia/macrophage pyroptosis is important to neuroinflammation.Circular RNAs(circRNAs)play a role in the central nervous system.However,the functional role and mechanism of circRNAs in regulating microglia/macrophage pyroptosis after spinal cord injury are still poorly studied.In the present study,we detected microglia/macrophage pyroptosis in a female rat model of spinal cord injury,along with upregulated levels of circ0000381 in the spinal cord.Our further experimental results suggest that circ0000381 may function as a sponge to sequester endogenous microRNA423-3p(miR-423-3p),which can increase the expression of NOD-like receptor 3(NLRP3),a pyroptosis marker.Therefore,upregulation of circ0000381 may be a compensatory change after spinal cord injury to attenuate microglia/macrophage pyroptosis.Indeed,knockdown of circ0000381 expression exacerbated microglia/macrophage pyroptosis.Collectively,our findings provide novel evidence for the upregulation of circ0000381,which may serve as a neuroprotective mechanism to attenuate microglia/macrophage pyroptosis after spinal cord injury.Accordingly,circ0000381 may be a novel therapeutic target for the treatment of spinal cord injury.
文摘Neurodegenerative diseases are often misdiagnosed,especially when the diagnosis is based solely on clinical symptoms.The p75 neurotrophic receptor(p75^(NTR))has been studied as an index of sensory and motor nerve development and maturation.Its cleavable extracellular domain(ECD)is readily detectable in various biological fluids including plasma,serum and urine.There is evidence for increased p75NTR ECD levels in neurodegenerative diseases such as Alzheimer’s disease,amyotrophic lateral sclerosis,age-related dementia,schizophrenia,and diabetic neuropathy.Whether p75^(NTR) ECD could be used as a biomarker for diagnosis and/or prognosis in these disorders,and whether it could potentially lead to the development of targeted therapies,remains an open question.In this review,we present and discuss published studies that have evaluated the relevance of this emerging biomarker in the context of various neurodegenerative diseases.We also highlight areas that require further investigation to better understand the role of p75^(NTR) ECD in the clinical diagnosis and management of neurodegenerative disorders.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC1002804 and 2016YFC1000600)the National Natural Science Foundation of China(Nos.81771618 and 81971356)the Fundamental Research Funds for the Central Universities(No.2042023kf0028).
文摘Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target genes of miR-142-3p,which is closely related to pregnancy-related diseases.Furthermore,miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway.This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway.Methods Mouse models of normal pregnancy and abortion were constructed,and the alterations of ILC1s,miR-142-3p,ILC1 transcription factor(T-bet),and pro-inflammatory cytokines of ILC1s(TNF-α,IFN-γand IL-2)were detected in mice from different groups.The targeting regulation of HMGB1 by miR-142-3p in ILC1s,and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated.In addition,the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8,Annexin-V/PI,ELISA,and RT-PCR,respectively.Furthermore,changes of the NF-κB signaling pathway in ILC1s were examined in the different groups.For the in vivo studies,miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface,and further detect the expression of HMGB1,pro-inflammatory cytokines,and the NF-κB signaling pathway.Results The number of ILC1s was significantly increased,the level of HMGB1 was significantly upregulated,and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice(all P<0.05).In addition,miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway(P<0.05).The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group(all P<0.05).Conclusion miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway,and attenuate the inflammation at the maternal-fetal interface in abortive mice.