As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a resu...As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a result Active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control strategies. This paper presents detailed analysis to compare and elevate the performance of two control strategies for ex-tracting reference currents of shunt active filters under balanced, un-balanced and non-sinusoidal conditions by using Fuzzy controller. The well known methods, instantaneous real active and reactive power method (p-q) and active and reactive current method (id-iq) are two control methods which are extensively used in active filters. Extensive Simulations are carried out with fuzzy controller for both p-q and Id-Iq methods for different voltage conditions and adequate results were presented. Simulation results validate the superior per-formance of active and reactive current control strategy (id-iq) with fuzzy controller over active and reactive power control strategy (p-q) with fuzzy controller.展开更多
Control strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions with PI and Fuzzy Controllers in MATLAB/...Control strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions with PI and Fuzzy Controllers in MATLAB/Simulink environment When the supply voltages are balanced and sinusoidal, the two control strategies are converge to the same compensation characteristics;However, the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The compensation capabilities are not equivalent, with p - q control strategy unable to yield an adequate solution when source voltages are not ideal. Extensive simulations are carried out with PI controller and also with Fuzzy controller for both p-q and Id-Iq control strategies under different main voltages. Extensive Simulations are carried out with PI as well as fuzzy controller for both p-q and Id - Iq control strategies by considering different voltage conditions and adequate results were presented. On owing Id - Iq method with fuzzy logic controller gives away an out-standing performance under any voltage conditions (balanced, un-balanced, balanced and non-sinusoidal).展开更多
文摘As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a result Active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control strategies. This paper presents detailed analysis to compare and elevate the performance of two control strategies for ex-tracting reference currents of shunt active filters under balanced, un-balanced and non-sinusoidal conditions by using Fuzzy controller. The well known methods, instantaneous real active and reactive power method (p-q) and active and reactive current method (id-iq) are two control methods which are extensively used in active filters. Extensive Simulations are carried out with fuzzy controller for both p-q and Id-Iq methods for different voltage conditions and adequate results were presented. Simulation results validate the superior per-formance of active and reactive current control strategy (id-iq) with fuzzy controller over active and reactive power control strategy (p-q) with fuzzy controller.
文摘Control strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions with PI and Fuzzy Controllers in MATLAB/Simulink environment When the supply voltages are balanced and sinusoidal, the two control strategies are converge to the same compensation characteristics;However, the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The compensation capabilities are not equivalent, with p - q control strategy unable to yield an adequate solution when source voltages are not ideal. Extensive simulations are carried out with PI controller and also with Fuzzy controller for both p-q and Id-Iq control strategies under different main voltages. Extensive Simulations are carried out with PI as well as fuzzy controller for both p-q and Id - Iq control strategies by considering different voltage conditions and adequate results were presented. On owing Id - Iq method with fuzzy logic controller gives away an out-standing performance under any voltage conditions (balanced, un-balanced, balanced and non-sinusoidal).