Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils...Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.展开更多
Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertil...Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertilization treatments on P changes and sorption isotherms as well as the relationship of soil properties to P sorption and P forms were evaluated in an Ustic Isohumisol, a calcareous soil, on the Loess Plateau, China. Compared to 1984, after 13 years of crop production, total soil P in the no-P treatments (control and N treatment) decreased by 5%-7%, but in the phosphorus fertilizer alone (P), nitrogen and phosphorus fertilizers in combination (NP), manure alone (M), and nitrogen and phosphorus fertilizers and manure in combination (NPM) treatments, it increased by 22%, 19%, 28%, and 58%, respectively. Residual fertilizer P was found mainly in NH4Ac-soluble P (Cas-P), followed by NaHCO3-soluble P (NaHCO3-P), and NH4F-soluble P (Al-P). Phosphorus sorption in the soils with different fertilization practices fit the Langmuir equations. Phosphorus sorption capacity in the no-P treatments increased, whereas it decreased in the P-included treatments (P, NP, and NPM treatments). Phosphorus sorption maximum (Qm) was significantly and negatively correlated to inorganic P including NaHCO3-P, Cas-P, NaOH-Na2CO3-soluble P (Fe-P), and Al-P (P ≤ 0.01). Moreover, long-term fertilization increased soil organic carbon in the NP, M, and NPM treatments and decreased pH in the NP and NPM treatments. Thus, the ability of the soil to release sorbed P to the environment increased under long-term P fertilization.展开更多
Study on soil phosphorus(P) fraction is an important aspect in probing the mechanisms of soil P accumulation in farmland and mitigating its losing risk to the environment. We used a sequential extraction method to e...Study on soil phosphorus(P) fraction is an important aspect in probing the mechanisms of soil P accumulation in farmland and mitigating its losing risk to the environment. We used a sequential extraction method to evaluate the impacts of long-term fertilization and straw incorporation on inorganic, organic, and residual P(Pi, Po, and Pre) fractions in the plow layer(0–20 cm) of acidic paddy soil in southern China. The experiment comprised of six treatments:(i) no fertilizer control(CK);(ii) straw incorporation and green manure(SG);(iii) nitrogen and P fertilizer(NP);(iv) NP+SG;(v) NP+K fertilizer(NPK); and(vi) NPK+SG. The results showed that, compared to the initial total soil P content(TSP, 600 mg kg^–1 in 1990), long-term(20 years) combined continuous P fertilizer and SG significantly increased P accumulation(by 13–20%) while single fertilization(39.3 kg P ha^–1 yr^–1) could maintain soil P status at the most. The average soil P fractions comprised of extractable Pi, Po, and Pre by 51.7, 33.4, and 14.9% in total soil P, respectively. With comparison of no fertilizer addition(CK), long-term single fertilization significantly(P〈0.05) increased the accumulation of Na HCO3^–, Na OH^–, and HCl^– extractable Pi fractions accounting for two- to three-fold, while SG increased the accumulation of Na HCO3^– and Na OH^– extractable Piand Po accounting for 12–60%. Though the mobilization of Pre fractions was not significant(P〉0.05), our data indicate that SG may partially substitute for fertilizer P input and minimizing soil P accumulation and subsequent environmental risk in the subtropical paddy soil.展开更多
Profile characteristics of accumulated P in 10 representativesoils of vegetable fields in suburban districts of Beijing wereinvestigated. Bioavailability of the accumulated P and its potentialeffect n the environment ...Profile characteristics of accumulated P in 10 representativesoils of vegetable fields in suburban districts of Beijing wereinvestigated. Bioavailability of the accumulated P and its potentialeffect n the environment were studied in a greenhouse pot experimentand a soil column experiment. The results showed that theconcentration of Olsen-P in the 0~20 cm soil samples of thevegetable fields ranged from 2.1 to 358.0 mg kg^-1, which was 2 to 10times higher than that of the crop field sin the suburbs of Beijing.Most of the excessive phosphorus was accumulated in the topsoils.展开更多
Long-term excessive application of mineral fertilizer has led to soil acidification and phosphorus(P) accumulation, increasing the risk of P loss and environmental pollution, and cessation of fertilization is widely c...Long-term excessive application of mineral fertilizer has led to soil acidification and phosphorus(P) accumulation, increasing the risk of P loss and environmental pollution, and cessation of fertilization is widely considered as a cost-effective management strategy to relieve this situation;however, how such cessation influences P speciation and concentrations in a bulk soil and colloidal fractions and whether decreasing P concentration might maintain soil fertility remain unclear. In this study, the effects of long-term fertilization(ca. 40 years) and short-term cessation of fertilization(ca. 16 months) on inorganic, organic,and colloidal P in lime concretion black soil were investigated using P sequential fractionation and31P nuclear magnetic resonance spectroscopy. After long-term fertilization, available P, dicalcium phosphate, iron-bound P, orthophosphate monoesters, and orthophosphate diesters increased significantly, but soil p H decreased by ca. 2.8 units, indicating that long-term fertilization caused soil acidification and P accumulation and changed P speciation markedly. In contrast, short-term fertilization cessation increased soil p H by ca. 0.8 units and slightly reduced available and inorganic P. Available P after fertilization cessation was 22.9–29.8 mg kg-1, which was still sufficient to satisfy crop growth requirements. Additionally, fertilization cessation increased the proportions of fine colloids(100–450 nm, including nontronite and some amorphous iron oxides) and drove a significant release of iron/aluminum oxide nanoparticles(1–100 nm) and associated P with orthophosphate and pyrophosphate species. In summary, short-term fertilization cessation effectively alleviated soil acidification and inorganic P accumulation, while concomitantly maintaining soil P fertility and improving the potential mobilization of P associated with microparticles.展开更多
基金The study was supported by the 948 Program of theMinistry of Agriculture of China (2003-253) the Natural Science Foundation of Hebei Province,China (300130).
文摘Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.
基金the National Basic Research Program of China(No.2005CB121102)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-YW-424-2)the West Star Foundation of the Chinese Academy of Sciences
文摘Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertilization treatments on P changes and sorption isotherms as well as the relationship of soil properties to P sorption and P forms were evaluated in an Ustic Isohumisol, a calcareous soil, on the Loess Plateau, China. Compared to 1984, after 13 years of crop production, total soil P in the no-P treatments (control and N treatment) decreased by 5%-7%, but in the phosphorus fertilizer alone (P), nitrogen and phosphorus fertilizers in combination (NP), manure alone (M), and nitrogen and phosphorus fertilizers and manure in combination (NPM) treatments, it increased by 22%, 19%, 28%, and 58%, respectively. Residual fertilizer P was found mainly in NH4Ac-soluble P (Cas-P), followed by NaHCO3-soluble P (NaHCO3-P), and NH4F-soluble P (Al-P). Phosphorus sorption in the soils with different fertilization practices fit the Langmuir equations. Phosphorus sorption capacity in the no-P treatments increased, whereas it decreased in the P-included treatments (P, NP, and NPM treatments). Phosphorus sorption maximum (Qm) was significantly and negatively correlated to inorganic P including NaHCO3-P, Cas-P, NaOH-Na2CO3-soluble P (Fe-P), and Al-P (P ≤ 0.01). Moreover, long-term fertilization increased soil organic carbon in the NP, M, and NPM treatments and decreased pH in the NP and NPM treatments. Thus, the ability of the soil to release sorbed P to the environment increased under long-term P fertilization.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-T07)the National Natural Science Foundation of China (41171396)
文摘Study on soil phosphorus(P) fraction is an important aspect in probing the mechanisms of soil P accumulation in farmland and mitigating its losing risk to the environment. We used a sequential extraction method to evaluate the impacts of long-term fertilization and straw incorporation on inorganic, organic, and residual P(Pi, Po, and Pre) fractions in the plow layer(0–20 cm) of acidic paddy soil in southern China. The experiment comprised of six treatments:(i) no fertilizer control(CK);(ii) straw incorporation and green manure(SG);(iii) nitrogen and P fertilizer(NP);(iv) NP+SG;(v) NP+K fertilizer(NPK); and(vi) NPK+SG. The results showed that, compared to the initial total soil P content(TSP, 600 mg kg^–1 in 1990), long-term(20 years) combined continuous P fertilizer and SG significantly increased P accumulation(by 13–20%) while single fertilization(39.3 kg P ha^–1 yr^–1) could maintain soil P status at the most. The average soil P fractions comprised of extractable Pi, Po, and Pre by 51.7, 33.4, and 14.9% in total soil P, respectively. With comparison of no fertilizer addition(CK), long-term single fertilization significantly(P〈0.05) increased the accumulation of Na HCO3^–, Na OH^–, and HCl^– extractable Pi fractions accounting for two- to three-fold, while SG increased the accumulation of Na HCO3^– and Na OH^– extractable Piand Po accounting for 12–60%. Though the mobilization of Pre fractions was not significant(P〉0.05), our data indicate that SG may partially substitute for fertilizer P input and minimizing soil P accumulation and subsequent environmental risk in the subtropical paddy soil.
基金National Key Basic Research Support Foundation of China(No.G1999011807)the National Natural Science Foundation of China(No.39500086).
文摘Profile characteristics of accumulated P in 10 representativesoils of vegetable fields in suburban districts of Beijing wereinvestigated. Bioavailability of the accumulated P and its potentialeffect n the environment were studied in a greenhouse pot experimentand a soil column experiment. The results showed that theconcentration of Olsen-P in the 0~20 cm soil samples of thevegetable fields ranged from 2.1 to 358.0 mg kg^-1, which was 2 to 10times higher than that of the crop field sin the suburbs of Beijing.Most of the excessive phosphorus was accumulated in the topsoils.
基金supported by the National Natural Science Foundation of China (No. 41907063)the Foundation of Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China (No. N2021-002)。
文摘Long-term excessive application of mineral fertilizer has led to soil acidification and phosphorus(P) accumulation, increasing the risk of P loss and environmental pollution, and cessation of fertilization is widely considered as a cost-effective management strategy to relieve this situation;however, how such cessation influences P speciation and concentrations in a bulk soil and colloidal fractions and whether decreasing P concentration might maintain soil fertility remain unclear. In this study, the effects of long-term fertilization(ca. 40 years) and short-term cessation of fertilization(ca. 16 months) on inorganic, organic,and colloidal P in lime concretion black soil were investigated using P sequential fractionation and31P nuclear magnetic resonance spectroscopy. After long-term fertilization, available P, dicalcium phosphate, iron-bound P, orthophosphate monoesters, and orthophosphate diesters increased significantly, but soil p H decreased by ca. 2.8 units, indicating that long-term fertilization caused soil acidification and P accumulation and changed P speciation markedly. In contrast, short-term fertilization cessation increased soil p H by ca. 0.8 units and slightly reduced available and inorganic P. Available P after fertilization cessation was 22.9–29.8 mg kg-1, which was still sufficient to satisfy crop growth requirements. Additionally, fertilization cessation increased the proportions of fine colloids(100–450 nm, including nontronite and some amorphous iron oxides) and drove a significant release of iron/aluminum oxide nanoparticles(1–100 nm) and associated P with orthophosphate and pyrophosphate species. In summary, short-term fertilization cessation effectively alleviated soil acidification and inorganic P accumulation, while concomitantly maintaining soil P fertility and improving the potential mobilization of P associated with microparticles.