Aluminum (AI) toxicity and phosphorous (P) deficiency are two major limiting factors for plant growth on acidic soils. Thus, the physiological mechanisms for AJ tolerance and P acquisition have been intensively st...Aluminum (AI) toxicity and phosphorous (P) deficiency are two major limiting factors for plant growth on acidic soils. Thus, the physiological mechanisms for AJ tolerance and P acquisition have been intensively studied. A commonly observed trait is that plants have developed the ability to utilize organic acid anions (OAs; mainly malate, citrate and oxalate) to combat AI toxicity and P deficiency. OAs secreted by roots into the rhizosphere can externally chelate Al^3+ and mobilize phosphate (Pi), while OAs synthesized in the cell can internally sequester Al^3+ into the vacuole and release free Pi for metabolism. Molecular mechanisms involved in OA synthesis and transport have been described in detail. Ensuing genetic improvement for AI tolerance and P efficiency through increased OA exudation and/or synthesis in crops has been achieved by transgenic and marker-assisted breeding. This review mainly elucidates the crucial roles of OAs in plant Al tolerance and P efficiency through summarizing associated physiological mechanisms, molecular traits and genetic manipulation of crops.展开更多
基金financially supported by the National Natural Science Foundation of China(No.U1301212)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB15030202)
文摘Aluminum (AI) toxicity and phosphorous (P) deficiency are two major limiting factors for plant growth on acidic soils. Thus, the physiological mechanisms for AJ tolerance and P acquisition have been intensively studied. A commonly observed trait is that plants have developed the ability to utilize organic acid anions (OAs; mainly malate, citrate and oxalate) to combat AI toxicity and P deficiency. OAs secreted by roots into the rhizosphere can externally chelate Al^3+ and mobilize phosphate (Pi), while OAs synthesized in the cell can internally sequester Al^3+ into the vacuole and release free Pi for metabolism. Molecular mechanisms involved in OA synthesis and transport have been described in detail. Ensuing genetic improvement for AI tolerance and P efficiency through increased OA exudation and/or synthesis in crops has been achieved by transgenic and marker-assisted breeding. This review mainly elucidates the crucial roles of OAs in plant Al tolerance and P efficiency through summarizing associated physiological mechanisms, molecular traits and genetic manipulation of crops.