大豆疫霉根腐病是由大豆疫霉菌(Phytophthora sojae)引起的危害大豆生长的严重病害。课题组前期研究表明具有P-loop结构域的GmPR10(Gene Bank accession no.FJ960440)和具有P-loop、Bet v1结构域的Gly m 4l(Gene Bank accession no.HQ91...大豆疫霉根腐病是由大豆疫霉菌(Phytophthora sojae)引起的危害大豆生长的严重病害。课题组前期研究表明具有P-loop结构域的GmPR10(Gene Bank accession no.FJ960440)和具有P-loop、Bet v1结构域的Gly m 4l(Gene Bank accession no.HQ913577.1)抑制大豆疫霉菌生长,并且过表达GmPR10和Gly m 4l的转基因大豆植株可以提高对大豆疫霉根腐病的抗性。为研究GmPR10和Gly m 4l抑菌机理,本研究利用点突变技术,获得了GmPR10的P-loop结构域突变体(Gly48/Thr48和Gly^51/Arg^51)、Gly m 4l的P-loop结构域突变体(Gly^49/Ile^49和Lys^55/Pro^55)、GmPR10和Gly m 4l的P-loop结构域以及Gly m 4l的Bet v1结构域缺失突变体,并纯化回收相应突变体蛋白,进行体外抑制大豆疫霉菌试验。结果表明,突变或缺失P-loop,Bet v1结构域的GmPR10和Gly m 4l失去了抑制大豆疫霉菌(Race 1)生长的能力,说明P-loop、Bet v 1结构域对GmPR10和Gly m 4l行使抑菌功能至关重要。展开更多
In a genome the set of proteins are formed by duplication and combination of domain superfamilies. P-loop containing nucleotide triphosphate (NTP) hydrolases superfamily is massively duplicated and has the most diff...In a genome the set of proteins are formed by duplication and combination of domain superfamilies. P-loop containing nucleotide triphosphate (NTP) hydrolases superfamily is massively duplicated and has the most different partner superfamilies among archaea, bacteria and eukarya, Here, we study the distributions of duplication and combination of p-loop containing NTP hydrolases superfamily in 169 completed genomes. When the total number of domains in a genome is larger, duplication and combination partners of p-loop conraining NTP hydrolases are more. This phenomenon is more obvious in metazoa. The distributions of abundance and corn bination of partners relate to the functions of the protein. Those distributions in metazoa are very different from those in other kingdoms because of complexity of metazoa. Finally the relationship between duplication and combination of p-loop containing NTP hydrolases superfamily in different genomes is described. It fits a power law.展开更多
文摘大豆疫霉根腐病是由大豆疫霉菌(Phytophthora sojae)引起的危害大豆生长的严重病害。课题组前期研究表明具有P-loop结构域的GmPR10(Gene Bank accession no.FJ960440)和具有P-loop、Bet v1结构域的Gly m 4l(Gene Bank accession no.HQ913577.1)抑制大豆疫霉菌生长,并且过表达GmPR10和Gly m 4l的转基因大豆植株可以提高对大豆疫霉根腐病的抗性。为研究GmPR10和Gly m 4l抑菌机理,本研究利用点突变技术,获得了GmPR10的P-loop结构域突变体(Gly48/Thr48和Gly^51/Arg^51)、Gly m 4l的P-loop结构域突变体(Gly^49/Ile^49和Lys^55/Pro^55)、GmPR10和Gly m 4l的P-loop结构域以及Gly m 4l的Bet v1结构域缺失突变体,并纯化回收相应突变体蛋白,进行体外抑制大豆疫霉菌试验。结果表明,突变或缺失P-loop,Bet v1结构域的GmPR10和Gly m 4l失去了抑制大豆疫霉菌(Race 1)生长的能力,说明P-loop、Bet v 1结构域对GmPR10和Gly m 4l行使抑菌功能至关重要。
基金Supported by the National Natural Science Foun-dation of China (10374072)
文摘In a genome the set of proteins are formed by duplication and combination of domain superfamilies. P-loop containing nucleotide triphosphate (NTP) hydrolases superfamily is massively duplicated and has the most different partner superfamilies among archaea, bacteria and eukarya, Here, we study the distributions of duplication and combination of p-loop containing NTP hydrolases superfamily in 169 completed genomes. When the total number of domains in a genome is larger, duplication and combination partners of p-loop conraining NTP hydrolases are more. This phenomenon is more obvious in metazoa. The distributions of abundance and corn bination of partners relate to the functions of the protein. Those distributions in metazoa are very different from those in other kingdoms because of complexity of metazoa. Finally the relationship between duplication and combination of p-loop containing NTP hydrolases superfamily in different genomes is described. It fits a power law.