The precipitation behavior of carbide in K416 B superalloy was investigated by means of creep measurement and microstructure observation. The results show that nanometer M6 C particles discontinuously precipitate in t...The precipitation behavior of carbide in K416 B superalloy was investigated by means of creep measurement and microstructure observation. The results show that nanometer M6 C particles discontinuously precipitate in the γ matrix or along the γ/γ′ interface of the alloy during high temperature tensile creep. Thereinto, the amount of fine M6 C carbide increases as creep goes on, and the coherent interfaces of M6 C phase precipitating from the γ matrix are {100} and {111} planes. The thermodynamics analysis indicates that the solubility of element carbon in the matrix decreases when the alloy is deformed by the axial tensile stress during creep, so as to cause the carbon segregating in the regions of stress concentration and combining with carbide-forming elements M(W, Co), which promotes the fine M6 C carbide to precipitate from the γ matrix.展开更多
The rupture behavior of a cast Ni-base superalloy M963 at high temperature has been investi- gated. The microstructure examination shows that there exists a large amount of the carbide and γ-γ' eutectic, which i...The rupture behavior of a cast Ni-base superalloy M963 at high temperature has been investi- gated. The microstructure examination shows that there exists a large amount of the carbide and γ-γ' eutectic, which is very harmful to the mechanical properties of M963 superalloy. The tensile strength of M963 superalloy both at room temperature and at high temperatures is higher than that of K17G alloy, but the tensile ductility of the former is much lower than that of the latter. In tensile fracture process with the high strain rate, the open carbides are the initiation site and the carbide/matrix interface is the propagation path of cracks. But in fracture process with the low strain rate, the carbide/matrix interface and cast microvoids are the initiation sites, and the carbide/matrix interface is the propagation path of cracks. The effective ways to improve ductility of M963 superalloy are also suggested.展开更多
High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron mic...High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron microscopy), and EDS (energy dispersive X-ray spectroscopy) analyses, the oxidation kinetics as well as the composition and morphology of scales were investigated. Thermodynamic calculations were used to explain the oxidation mechanism. The results showed that as the oxidation temperature increased, the oxidation rate, the scale thickness, and scale spallation increased. FGH96 P/M superalloy exhibits good oxidation resistance at temperature below 800℃. The oxidation kinetics follows an approximately parabolic rate law, and the oxide layer was mainly composed of Cr2O3 TiO2 and a little amount of NiCr2O4. The oxidation is controlled by the transmission of chromium. titanium, and oxygen through the oxide scale.展开更多
In situ fatigue tests in special designed SEM were conducted to trace the whole process of crack initiation and propagation fill to fracture in mckel-base P/M superalloy seeded inclusions. The experimental results sho...In situ fatigue tests in special designed SEM were conducted to trace the whole process of crack initiation and propagation fill to fracture in mckel-base P/M superalloy seeded inclusions. The experimental results show that non-metallic inclusions can induce crack initiation. When the inclusion size is larger than the critical one, the crack can propagate as the main crack that induces the specimen to fracture. As a result, the LCF life of the specimen decreases.展开更多
Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at ...Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.展开更多
A special designed experiment was conducted for observing crack initiation and growth in P/M Rene95 superalloy under tension-tension loading by self-made SEM in-situ fatigue loading stag. Several alumina inclusion par...A special designed experiment was conducted for observing crack initiation and growth in P/M Rene95 superalloy under tension-tension loading by self-made SEM in-situ fatigue loading stag. Several alumina inclusion particles exposed at the specimen surface were observed carefully. During fatigue test inclusions led to cracks initiation. The cracks can be formed by two mechanisms. Generally, the cracks nucleated at the interface between inclusion and matrix. Sometimes, cracks were also formed inside the inclusion. As the increase of cycles, some cracks at the interface between inclusion and matrix broadened and propagated along the direction about 45 degrees to the loading axis. On the other hand, the cracks inside the inclusion propagated in the inclusion and towards matrix.展开更多
Two cooling schemes (continuous cooling and interrupted cooling tests) were applied to investigate the cooling γ precipitation behavior in powder metallurgy superalloy FGH4096. The effect of cooling rate on cooling...Two cooling schemes (continuous cooling and interrupted cooling tests) were applied to investigate the cooling γ precipitation behavior in powder metallurgy superalloy FGH4096. The effect of cooling rate on cooling γ precipitation and the development of γ precipitates during cooling process were involved in this study. The ultimate tensile strength (ErrS) of the specimens in various cooling circumstances was tested. The experiential equations were obtained between the average sizes of secondary and tertiary γ precipitates, the strength, and cooling rate. The results show that they are inversely correlated with the cooling rate as well as the grain boundary changes from serrated to straight, the shape of secondary γ precipitates changes from irregular cuboidal to spherical, while the formed tertiary γ precipitates are always spherical. The interrupted cooling tests show that the average size of secondary γ precipitates increases as a linear function of interrupt temperature for a fixed cooling rate of 24℃/min. The strength first decreases and then increases against interrupt temperature, which is fundamentally caused by the multistage nucleation of γ precipitates during cooling process.展开更多
Ni-Cr-W-Al-Ti-MoS2 self-lubricating composites were prepared through the powder metallurgy (P/M) method. Their friction properties were investigated by a pin-on-disk tribometer in the range from the room temperature...Ni-Cr-W-Al-Ti-MoS2 self-lubricating composites were prepared through the powder metallurgy (P/M) method. Their friction properties were investigated by a pin-on-disk tribometer in the range from the room temperature to 600 ℃. Alumina, silicon nitride and nickel-iron-sulfide alloys were selected as the counterface materials. Results indicate that the lowest friction coefficients under 0.22 can be obtained at 600℃ when rubbed against alumina. When rubbed against nickel-iron-sulfide alloys, are presented the lowest wear rates in the magnitude of 10^-6 mm^3/N-m, one order of magnitude lower than those when rubbed against ceramics. In the case of three rubbing pairs, the wear rates of the composite containing MoS2 present themselves inversely proportional to friction coefficients. With alumina ceramics used as a counterface, transfer films and glaze layers will form on the contact surface playing a main role in lubrication at high temperatures. However, when silicon nitride and nickel-iron-sulfide alloy are used, the lubricating transfer films appear not to be prominent.展开更多
P/M superalloy disks obtain their final strength by appropriate heat treatments; the maximum attainable strength depends on the rapid cooling rate from the solution annealing. A rapid quench of a large disk forging ca...P/M superalloy disks obtain their final strength by appropriate heat treatments; the maximum attainable strength depends on the rapid cooling rate from the solution annealing. A rapid quench of a large disk forging can cause two problems, surface cracking and shape distortion.In the past,many attempts employ the finite element code to model and to predict temperature evolution and induced stress distribution in a large turbine disk. The major difficulty was the correct description of alloy behavior; particularly the thermomechanical properties and the failure criteria of material during the cooling. High temperature fatigue resistance is always the key requirement for disk materials. New methodology of residual life management emphasizes the initiation as well as the propagation of the cracks developed under the service conditions. One of major challenges to P/M superalloys is the time-dependent behavior of fatigue cracking, which relates to the well-known SAGBO (stress-assisted grain boundary oxidation) phenomenon.A great effort has been done to understand the micro-mechanism of time-dependent fatigue crack propagation resulted in the second generation of P/M superalloys. Further improvement on temperature capability of disk alloys at rim area may lead to the idea of dual-property disks.Different grain structures at different portions of a large disk are possible,as the property requirements for different locations are different. This goal is achievable if the thermal history at specific disk locations can be controlled to develop desirable microstructures and properties.Some suggestions on the future direction of research efforts will be discused.展开更多
基金Projects(2010CB631200,2010CB631206)supported by the National Basic Research Program of ChinaProject(50931004)supported by the National Natural Science Foundation of China
文摘The precipitation behavior of carbide in K416 B superalloy was investigated by means of creep measurement and microstructure observation. The results show that nanometer M6 C particles discontinuously precipitate in the γ matrix or along the γ/γ′ interface of the alloy during high temperature tensile creep. Thereinto, the amount of fine M6 C carbide increases as creep goes on, and the coherent interfaces of M6 C phase precipitating from the γ matrix are {100} and {111} planes. The thermodynamics analysis indicates that the solubility of element carbon in the matrix decreases when the alloy is deformed by the axial tensile stress during creep, so as to cause the carbon segregating in the regions of stress concentration and combining with carbide-forming elements M(W, Co), which promotes the fine M6 C carbide to precipitate from the γ matrix.
基金supported by the Postdoctoral Science Foundation of China
文摘The rupture behavior of a cast Ni-base superalloy M963 at high temperature has been investi- gated. The microstructure examination shows that there exists a large amount of the carbide and γ-γ' eutectic, which is very harmful to the mechanical properties of M963 superalloy. The tensile strength of M963 superalloy both at room temperature and at high temperatures is higher than that of K17G alloy, but the tensile ductility of the former is much lower than that of the latter. In tensile fracture process with the high strain rate, the open carbides are the initiation site and the carbide/matrix interface is the propagation path of cracks. But in fracture process with the low strain rate, the carbide/matrix interface and cast microvoids are the initiation sites, and the carbide/matrix interface is the propagation path of cracks. The effective ways to improve ductility of M963 superalloy are also suggested.
文摘High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron microscopy), and EDS (energy dispersive X-ray spectroscopy) analyses, the oxidation kinetics as well as the composition and morphology of scales were investigated. Thermodynamic calculations were used to explain the oxidation mechanism. The results showed that as the oxidation temperature increased, the oxidation rate, the scale thickness, and scale spallation increased. FGH96 P/M superalloy exhibits good oxidation resistance at temperature below 800℃. The oxidation kinetics follows an approximately parabolic rate law, and the oxide layer was mainly composed of Cr2O3 TiO2 and a little amount of NiCr2O4. The oxidation is controlled by the transmission of chromium. titanium, and oxygen through the oxide scale.
文摘In situ fatigue tests in special designed SEM were conducted to trace the whole process of crack initiation and propagation fill to fracture in mckel-base P/M superalloy seeded inclusions. The experimental results show that non-metallic inclusions can induce crack initiation. When the inclusion size is larger than the critical one, the crack can propagate as the main crack that induces the specimen to fracture. As a result, the LCF life of the specimen decreases.
文摘Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.
基金the National Natural Science Foundation of China, No. 59871007.]
文摘A special designed experiment was conducted for observing crack initiation and growth in P/M Rene95 superalloy under tension-tension loading by self-made SEM in-situ fatigue loading stag. Several alumina inclusion particles exposed at the specimen surface were observed carefully. During fatigue test inclusions led to cracks initiation. The cracks can be formed by two mechanisms. Generally, the cracks nucleated at the interface between inclusion and matrix. Sometimes, cracks were also formed inside the inclusion. As the increase of cycles, some cracks at the interface between inclusion and matrix broadened and propagated along the direction about 45 degrees to the loading axis. On the other hand, the cracks inside the inclusion propagated in the inclusion and towards matrix.
文摘Two cooling schemes (continuous cooling and interrupted cooling tests) were applied to investigate the cooling γ precipitation behavior in powder metallurgy superalloy FGH4096. The effect of cooling rate on cooling γ precipitation and the development of γ precipitates during cooling process were involved in this study. The ultimate tensile strength (ErrS) of the specimens in various cooling circumstances was tested. The experiential equations were obtained between the average sizes of secondary and tertiary γ precipitates, the strength, and cooling rate. The results show that they are inversely correlated with the cooling rate as well as the grain boundary changes from serrated to straight, the shape of secondary γ precipitates changes from irregular cuboidal to spherical, while the formed tertiary γ precipitates are always spherical. The interrupted cooling tests show that the average size of secondary γ precipitates increases as a linear function of interrupt temperature for a fixed cooling rate of 24℃/min. The strength first decreases and then increases against interrupt temperature, which is fundamentally caused by the multistage nucleation of γ precipitates during cooling process.
文摘Ni-Cr-W-Al-Ti-MoS2 self-lubricating composites were prepared through the powder metallurgy (P/M) method. Their friction properties were investigated by a pin-on-disk tribometer in the range from the room temperature to 600 ℃. Alumina, silicon nitride and nickel-iron-sulfide alloys were selected as the counterface materials. Results indicate that the lowest friction coefficients under 0.22 can be obtained at 600℃ when rubbed against alumina. When rubbed against nickel-iron-sulfide alloys, are presented the lowest wear rates in the magnitude of 10^-6 mm^3/N-m, one order of magnitude lower than those when rubbed against ceramics. In the case of three rubbing pairs, the wear rates of the composite containing MoS2 present themselves inversely proportional to friction coefficients. With alumina ceramics used as a counterface, transfer films and glaze layers will form on the contact surface playing a main role in lubrication at high temperatures. However, when silicon nitride and nickel-iron-sulfide alloy are used, the lubricating transfer films appear not to be prominent.
文摘P/M superalloy disks obtain their final strength by appropriate heat treatments; the maximum attainable strength depends on the rapid cooling rate from the solution annealing. A rapid quench of a large disk forging can cause two problems, surface cracking and shape distortion.In the past,many attempts employ the finite element code to model and to predict temperature evolution and induced stress distribution in a large turbine disk. The major difficulty was the correct description of alloy behavior; particularly the thermomechanical properties and the failure criteria of material during the cooling. High temperature fatigue resistance is always the key requirement for disk materials. New methodology of residual life management emphasizes the initiation as well as the propagation of the cracks developed under the service conditions. One of major challenges to P/M superalloys is the time-dependent behavior of fatigue cracking, which relates to the well-known SAGBO (stress-assisted grain boundary oxidation) phenomenon.A great effort has been done to understand the micro-mechanism of time-dependent fatigue crack propagation resulted in the second generation of P/M superalloys. Further improvement on temperature capability of disk alloys at rim area may lead to the idea of dual-property disks.Different grain structures at different portions of a large disk are possible,as the property requirements for different locations are different. This goal is achievable if the thermal history at specific disk locations can be controlled to develop desirable microstructures and properties.Some suggestions on the future direction of research efforts will be discused.