We conducted measurement and calculation to resolve the long-standing large discrepancy in the metastable state lifetime for the ^(88)Sr atom between theoretical and experimental results. The present lifetime τ = 830...We conducted measurement and calculation to resolve the long-standing large discrepancy in the metastable state lifetime for the ^(88)Sr atom between theoretical and experimental results. The present lifetime τ = 830_(-240)^(+600)s,measured using the magneto-optical trap as a photon amplifier to detect the weak decay events, is approximately60% larger than the previous experimental value τ = 520_(-140)^(+310)s. By considering the electron correlation effects in the framework of the multiconfiguration Dirac–Hartree–Fock theory, we obtained a theoretical lifetime of 1079(54) s, which lies in the range of measurements with error bars. Furthermore, we considered the higher-order electron correlation and Breit interaction to control the uncertainty of the theoretical calculation. The significant improvement in the agreement between calculations and measurements is attributed to the updated blackbody radiation-induced decay rate.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11874090, 91536106, 61127901, 11404025, and U1530142)the Strategic Priority Research Program of CAS (Grant No. XDB21030100)+1 种基金the Key Research Project of Frontier Science of CAS (Grant No. QYZDB-SSW-JSC004)the West Light Foundation of CAS (Grant No. XAB2018B17)。
文摘We conducted measurement and calculation to resolve the long-standing large discrepancy in the metastable state lifetime for the ^(88)Sr atom between theoretical and experimental results. The present lifetime τ = 830_(-240)^(+600)s,measured using the magneto-optical trap as a photon amplifier to detect the weak decay events, is approximately60% larger than the previous experimental value τ = 520_(-140)^(+310)s. By considering the electron correlation effects in the framework of the multiconfiguration Dirac–Hartree–Fock theory, we obtained a theoretical lifetime of 1079(54) s, which lies in the range of measurements with error bars. Furthermore, we considered the higher-order electron correlation and Breit interaction to control the uncertainty of the theoretical calculation. The significant improvement in the agreement between calculations and measurements is attributed to the updated blackbody radiation-induced decay rate.