GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, i...GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, including deeply etched, bevel, and stepped-mesas terminal structures, to suppress electric field crowding effects at the device and junction edges. Deeply-etched mesa terminal yields a breakdown voltage of 1205 V, i.e., 89% of the ideal voltage. The bevel-mesa terminal achieves about 89% of the ideal breakdown voltage, while the step-mesa terminal is less effective in mitigating electric field crowding, at about 32% of the ideal voltage. This work can provide an important reference for the design of high-power, high-voltage GaN-based P-i-N power devices, finding a terminal protection structure suitable for GaNPiN diodes to further enhance the breakdown performance of the device and to unleash the full potential of GaN semiconductor materials.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52274295,52104291,51874079)the Natural Science Foundation of Hebei Province,China (Nos.E2022501028,E2022501029,E2021501029,A2021501007,E2018501091,E2020501001,E2022501030)+4 种基金the Hebei Province Key Research and Development Plan Project,China (No.19211302D)Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,China (No.22567627H)the Fundamental Research Funds for the Central Universities,China (Nos.N2223009,N2223010,N2123035,N2023040)the Science and Technology Project of Hebei Education Department,China (No.ZD2022158)the Central Guided Local Science and Technology Development Fund Project of Hebei Province,China (No.226Z4401G).
文摘GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, including deeply etched, bevel, and stepped-mesas terminal structures, to suppress electric field crowding effects at the device and junction edges. Deeply-etched mesa terminal yields a breakdown voltage of 1205 V, i.e., 89% of the ideal voltage. The bevel-mesa terminal achieves about 89% of the ideal breakdown voltage, while the step-mesa terminal is less effective in mitigating electric field crowding, at about 32% of the ideal voltage. This work can provide an important reference for the design of high-power, high-voltage GaN-based P-i-N power devices, finding a terminal protection structure suitable for GaNPiN diodes to further enhance the breakdown performance of the device and to unleash the full potential of GaN semiconductor materials.