A practical and scalable synthesis route of acetylphenylboronic acids is described. Bromoacetophenones(compounds 3a, 3b) were ketalized with ethylene glycol and triethyl orthoformate to give bromo ketals(compounds 4a_...A practical and scalable synthesis route of acetylphenylboronic acids is described. Bromoacetophenones(compounds 3a, 3b) were ketalized with ethylene glycol and triethyl orthoformate to give bromo ketals(compounds 4a_4c) in 60_80% yields. Compounds 4a_4b were treated with a Grignard reagent and then exchanged with borate to give p- and m-acetylphenyl boronic acids(compounds 5a and 5b) in 80% and 56% yields, respectively. The o-form(compound 5c) was obtained in 61% yield via the BuLi method.展开更多
A composite of SnS_(2)and carbon nanotube(CNT)was successfully synthesized as a visible-light-driven photocatalyst with a mechanochemical method.In comparing with SnS_(2),the SnS_(2)/CNT composite im-proved much the p...A composite of SnS_(2)and carbon nanotube(CNT)was successfully synthesized as a visible-light-driven photocatalyst with a mechanochemical method.In comparing with SnS_(2),the SnS_(2)/CNT composite im-proved much the photocatalytic removal of Cr(VI)in acidic condition,which was confirmed to its special solid acid structure.During the synthesis of the SnS_(2)/CNT composite by ball milling,S-C p-πbonding was formed between sulfur atoms in SnS_(2)and carbon atoms in CNT.The generated S-C p-πbonding enhanced the transfer of photo-induced electrons in the bulk phase of the composite photocatalyst un-der visible light irradiation.Moreover,the persistent radical sites on CNT were able to trap photo-induced electrons and served as conjugated acid sites in the photocatalysis,which increased surface concentration of protons through their association with H+.These made the catalyst have a solid acid structure with plentiful surface protons,promoting the interfacial electron transfer between the catalysts and Cr(VI)and increasing the source of H+for the reduction of Cr(VI).As a result,the photocatalytic reduction rate of Cr(VI)on the SnS_(2)/CNT composite were dramatically enhanced,being about 800%that on SnS_(2).On the basis of various characterizations and probe experiments,we confirmed the significance of the solid acid structure of the photocatalyst and clarified the catalytic mechanism of the new photocatalyst.Our finding may provide a new strategy to prepare highly active photocatalysts for proton-involved reactions.展开更多
基金the National Nature Science Foundation of China(No.30 17110)
文摘A practical and scalable synthesis route of acetylphenylboronic acids is described. Bromoacetophenones(compounds 3a, 3b) were ketalized with ethylene glycol and triethyl orthoformate to give bromo ketals(compounds 4a_4c) in 60_80% yields. Compounds 4a_4b were treated with a Grignard reagent and then exchanged with borate to give p- and m-acetylphenyl boronic acids(compounds 5a and 5b) in 80% and 56% yields, respectively. The o-form(compound 5c) was obtained in 61% yield via the BuLi method.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21906184,22076007)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(No.CZQ23008).
文摘A composite of SnS_(2)and carbon nanotube(CNT)was successfully synthesized as a visible-light-driven photocatalyst with a mechanochemical method.In comparing with SnS_(2),the SnS_(2)/CNT composite im-proved much the photocatalytic removal of Cr(VI)in acidic condition,which was confirmed to its special solid acid structure.During the synthesis of the SnS_(2)/CNT composite by ball milling,S-C p-πbonding was formed between sulfur atoms in SnS_(2)and carbon atoms in CNT.The generated S-C p-πbonding enhanced the transfer of photo-induced electrons in the bulk phase of the composite photocatalyst un-der visible light irradiation.Moreover,the persistent radical sites on CNT were able to trap photo-induced electrons and served as conjugated acid sites in the photocatalysis,which increased surface concentration of protons through their association with H+.These made the catalyst have a solid acid structure with plentiful surface protons,promoting the interfacial electron transfer between the catalysts and Cr(VI)and increasing the source of H+for the reduction of Cr(VI).As a result,the photocatalytic reduction rate of Cr(VI)on the SnS_(2)/CNT composite were dramatically enhanced,being about 800%that on SnS_(2).On the basis of various characterizations and probe experiments,we confirmed the significance of the solid acid structure of the photocatalyst and clarified the catalytic mechanism of the new photocatalyst.Our finding may provide a new strategy to prepare highly active photocatalysts for proton-involved reactions.