Let A p(n)(p, n∈N={1,2,…}) denote the class of functions of the form f(z)=z p+a p+n z p+n +… which are analytic in the unit disc E={z:|z|<1}. By using the method of differential subordinati ons we give som...Let A p(n)(p, n∈N={1,2,…}) denote the class of functions of the form f(z)=z p+a p+n z p+n +… which are analytic in the unit disc E={z:|z|<1}. By using the method of differential subordinati ons we give some sufficient conditions for a function f(z)∈A p(n) to be a certain subclass R p(n,k) of p-valently close-to-convexity funct ions.展开更多
We first use the Schwarz rearrangement to solve a minimization problem on eigenvalues of the one-dimensional p-Laplacian with integrable potentials. Then we construct an optimal class of non-degenerate potentials for ...We first use the Schwarz rearrangement to solve a minimization problem on eigenvalues of the one-dimensional p-Laplacian with integrable potentials. Then we construct an optimal class of non-degenerate potentials for the one-dimensional p-Laplacian with the Dirichlet boundary condition. Such a class of nondegenerate potentials is a generalization of many known classes of non-degenerate potentials and will be useful in many problems of nonlinear differential equations.展开更多
文摘Let A p(n)(p, n∈N={1,2,…}) denote the class of functions of the form f(z)=z p+a p+n z p+n +… which are analytic in the unit disc E={z:|z|<1}. By using the method of differential subordinati ons we give some sufficient conditions for a function f(z)∈A p(n) to be a certain subclass R p(n,k) of p-valently close-to-convexity funct ions.
基金supported by National Natural Science Foundation of China(Grant Nos.11231001 and 11371213)the Programme of Introducing Talents of Discipline to Universities of China(Grant No.111-2-01)
文摘We first use the Schwarz rearrangement to solve a minimization problem on eigenvalues of the one-dimensional p-Laplacian with integrable potentials. Then we construct an optimal class of non-degenerate potentials for the one-dimensional p-Laplacian with the Dirichlet boundary condition. Such a class of nondegenerate potentials is a generalization of many known classes of non-degenerate potentials and will be useful in many problems of nonlinear differential equations.