期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法 被引量:11
1
作者 冯琦 陈尔学 +2 位作者 李增元 李兰 赵磊 《林业科学》 EI CAS CSCD 北大核心 2016年第3期10-22,共13页
【目的】利用国产合成孔径雷达(SAR)系统(CASMSAR)获取的机载P-波段全极化SAR(PolSAR)数据,分析SAR对森林地上生物量(AGB)的响应与地形的关系,建立融合地形因子的高精度多项式模型,以提高森林AGB的估测精度。【方法】首先以基于机载激... 【目的】利用国产合成孔径雷达(SAR)系统(CASMSAR)获取的机载P-波段全极化SAR(PolSAR)数据,分析SAR对森林地上生物量(AGB)的响应与地形的关系,建立融合地形因子的高精度多项式模型,以提高森林AGB的估测精度。【方法】首先以基于机载激光雷达(Li DAR)数据得到的研究区坡度分布图与结合实测样地AGB数据得到的森林AGB分布图作为参考数据进行系统抽样,分析森林AGB与P-波段PolSAR后向散射强度的关系以及不同坡度下二者的相关性变化;然后利用Li DAR得到的高精度数字高程模型(DEM)结合机载P-波段的轨道数据计算当地入射角,进而建立以后向散射强度、当地入射角以及雷达视角为输入特征的多项式统计模型,同时将以上系统抽样得到的样本一部分作为模型训练样本,一部分作为精度检验样本。为避免样本尺度引起的偶然性,检验了20 m×20 m至100 m×100 m不同样地尺度下的估测精度。【结果】以90 m×90 m样本为例,当坡度为0°~5°时,引入当地入射角(第2组特征)的估测精度与未引入当地入射角(第1组特征)的估测精度分别为:决定系数(R^2)为0.634和0.634,均方根误差(RMSE)为12.07和12.08 t·hm^(-2),总精度(Acc.)为78.91%和78.89%;当坡度为5°~10°时,第2组特征与第1组特征的估测精度分别为:R2为0.524和0.523,RMSE为13.52和13.97 t·hm^(-2),Acc.为80.57%和80.52%;当坡度大于10°时,第2组特征与第1组特征的估测精度分别为:R^2为0.628和0.519,RMSE为13.16和15.70 t·hm^(-2),Acc.为81.05%和78.55%。随着样地尺度增大,2组特征的估测精度均增大,且第2组特征的估测精度大于第1组。【结论】当坡度小于10°时,地形对森林的后向散射强度几乎无影响;当坡度大于10°时,地形的影响显著,在不同尺度下,引入当地入射角的估测模型均可以有效提高估测精度,充分说明模型的有效性和稳定性。此外,随着尺度增大,无论采用的模型是否考虑了地形影响,其估测精度都逐渐提高并趋于稳定,揭示出对复杂地形下森林AGB估测模型效果的评价必须考虑尺度的影响,且参考样地要足够大,否则难以得到客观的结论。 展开更多
关键词 机载SAR p-波段 POLSAR 森林地上生物量 地形
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部