Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability res...Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization.展开更多
The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the...The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.展开更多
The seepage characteristics of multiscale porous media is of considerable significance in many scientific and engineering fields.The Darcy permeability is one of the key macroscopic physical properties to characterize...The seepage characteristics of multiscale porous media is of considerable significance in many scientific and engineering fields.The Darcy permeability is one of the key macroscopic physical properties to characterize the seepage capacity of porous media.Therefore,based on the statistically fractal scaling law of porous media,fractal geometry is applied to model the multiscale pore structures.And a two-dimensional fractal orifice-throat model with multiscale and tortuous characteristics is proposed for the seepage flow through porous media.The analytical expression for Darcy permeability of porous media is derived,which is validated by comparing with available experimental data.The results show that the Darcy permeability is significantly influenced by porosity,orifice-throat fractal dimension,minimum to maximum diameter ratio,orifice-throat ratio and tortuosity fractal dimension.The present results are helpful for understanding the seepage mechanism of multiscale porous media,and may provide theoretical basis for unconventional oil and gas exploration and development,porous phase transition energy storage composites,CO2 geological sequestration,environmental protection and nuclear waste treatment,etc.展开更多
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical mode...The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.展开更多
Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a sin...Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces.展开更多
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore forma...Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.展开更多
Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics frompartic...Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.展开更多
The dynamic research of landslide is one of the key Points in landslidology. In the paper,from the view point of nonlinear dynamic theory. some features of Xintan landslide, such as the distribution regularities of sp...The dynamic research of landslide is one of the key Points in landslidology. In the paper,from the view point of nonlinear dynamic theory. some features of Xintan landslide, such as the distribution regularities of spatial and temporal fractal dimensions and their corresponding relationships to landslide occurring are researched. The accumulative principles of fractal dimension reduction is exploratively pointed out. The nonlinear dynamic equation of the landslide is built by analyzing the relationship between the correlation dimension and the phase space. Finally, the forecasted results and error analysis are listed. The research results are satisfactory.展开更多
The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal co...The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.展开更多
The contact sti ness of a mechanical bonding surface is an important parameter in determining the normal and radial contact force. To improve the calculation accuracy of the contact force model, the surface roughness ...The contact sti ness of a mechanical bonding surface is an important parameter in determining the normal and radial contact force. To improve the calculation accuracy of the contact force model, the surface roughness of the bonding surface and the energy loss that necessarily occurs during the impact process should be considered com?prehensively. To study the normal contact force of a revolute joint with clearance more accurately in the case of dry friction, a nonlinear sti ness coe cient model considering the surface roughness was established based on fractal theory, which considers the elastic, elastic?plastic, and plastic deformations of the asperities of the contact surface during the contact process. On this basis, a modified nonlinear spring damping model was established based on the Lankarani–Nikravesh contact force model. The laws influencing the surface roughness, recovery coe cient, initial velocity, and clearance size on the impact force were revealed, and were compared with the Lankarani–Nikravesh model and a hybrid model using MATLAB. The maximum impact force was obtained using a modified contact force model under di erent initial velocities, di erent clearances, and di erent degrees of surface roughness, and the calculated results were then compared with the experiment results. This study indicates that the modified model can be used more widely than other models, and is suitable for both large and small clearances. In particular, the modified model is more accurate when calculating the contact force of a revolute joint with a small clearance.展开更多
Establishing a long air gap discharge model considering the streamer-leader transition and randomness of the discharge path is of great signiflcance to improve the accuracy of discharge characteristic prediction and o...Establishing a long air gap discharge model considering the streamer-leader transition and randomness of the discharge path is of great signiflcance to improve the accuracy of discharge characteristic prediction and optimize external insulation design.Based on fractal theory and thermal ionization theory of streamer-leader transition,this work establishes a dynamic development model for the long air gap discharge streamer-leader system,which includes streamer inception,streamer development,leader inception,development of streamer-leader system and flnal jump.The positive discharge process of a 3 m rod plate is simulated to obtain the fractal distribution of the discharge path and the law of leader development for comparison with the discharge test results.The results show that the simulation model is similar to test results in the development characteristics of leader path distribution,each stage time and leader velocity.Finally,a simulation calculation of a 50%breakdown voltage of the rod-plate gap and ball-plate gap is carried out,with results fairly consistent with test data,proving the effectiveness and practicality of the model.展开更多
The surface morphology of Ti-Mg supported catalyst and the polyethyleneparticles are studied using scanning electron microscope(SEM) technology. The results show thateithen the catalyst's surface or polymer partic...The surface morphology of Ti-Mg supported catalyst and the polyethyleneparticles are studied using scanning electron microscope(SEM) technology. The results show thateithen the catalyst's surface or polymer particle's surface is irregular and has fractalcharacteristics, which can be described by fractal parameter. The more interesting discovery is thatthe surface fractal dimension values of the polymer particles vary periodically with thepolymerization time. We call this phenomenon fractal evolution, which can be divided into the'revolution' stage and the 'evolution' stage. And then we present polymerization fractal growingmodel (PFGM), and successfully describe and/or predict the whole evolving process of thepolyethylene particle morphology under the different slurry polymerization (includingpre-polymerization) conditions without H_2.展开更多
The target in this investigation is separation and delineation of geochemical anomalies for the single element Cu in Mesgaran mining area, eastern Iran. Mesgaran mining area is located in south part of Sarbishe county...The target in this investigation is separation and delineation of geochemical anomalies for the single element Cu in Mesgaran mining area, eastern Iran. Mesgaran mining area is located in south part of Sarbishe county with about 29 Km distance to the county center. This region is part of an Ophiolite sequence and the copper anomalies seem to be related to a volcanic massive sulfide (VMS) deposit whose main part (massive sulfide Lens) has been eroded. In order to delineate Cu anomalies, the boxplot as an Exploratory Data Analysis (EDA) method and concentration-volume (C-V) Fractal modeling are employed. Both of the methods reveal low-deep anomalies which are highly correlated with geological and geophysical studies. As the main result of this study we show that Fractal modeling in spite of the Boxplot, is not recommended for complex geological settings. The proved shallow anomalies recorded by geophysical studies and defined by the used methods are in accordance to the stringer zone of a volcanic massive sulfide (VMS) deposit in Mesgaran mining area which means this region is the bottom of a VMS deposit and geochemical anomalies are related to the remained parts of the deposit.展开更多
observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the p...observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the pile-ups of sbear crack-dislocations. A fractal model can be used tosimulate the Riedel within Xiedel geometry, allowing the direct rneasarement of tbe ftactal dimen sions of en echelon fractare systems. The energy dissipation of tbe en ccbe1on fracture system canbe deduced using a fracil damage evo1ution model which exptalns tbe evo1ution process of en eche lon fracture svstems. The fractal nature of the fractures can be used to dcrive an accurate estimateof total energy dissipation.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
A fractal pore diffusion model of fluids in porous media which is in good agreement with the experimental data of the coke-CO2 reaction, has been derived by using the Mandelbrot's fractal length-area relation. Bas...A fractal pore diffusion model of fluids in porous media which is in good agreement with the experimental data of the coke-CO2 reaction, has been derived by using the Mandelbrot's fractal length-area relation. Based on the model, a new formula and its interpretation about the tortuosity of pore structures of a porous medium have been suggested, from which the fractal pore diffusion resistance has been defined. The resistance ascends obviously with the fractal pore dimension and the conversion ratio increasing, especially in the middle-latter period of fluid-solid reactions.展开更多
Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterize...Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterized quantitatively by fractal models. Fractal dimensions calculated by several fractal models including box-counting model, perimeter-area (P-A) model, and number-area (N-A) model show the gradual change from outer banding to inner banding, indicating a decrease in area percentage, in irregularity, in shape and in grain size, and an increase in the numbers of grains. These results may imply an inward growth of sphalerite during mineralization, and self-organization properties are involved in the nonlinear process of mineralization.展开更多
Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity chan...Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed,展开更多
基金supported by China Natural Science Foundation(Grant No.52274053)Beijing Natural Science Foundation(Grant No.3232028)Open Fund of State Key Laboratory of Offshore Oil Exploitation(Grant No.CCL2021RCPS0515KQN)。
文摘Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization.
文摘The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.
文摘The seepage characteristics of multiscale porous media is of considerable significance in many scientific and engineering fields.The Darcy permeability is one of the key macroscopic physical properties to characterize the seepage capacity of porous media.Therefore,based on the statistically fractal scaling law of porous media,fractal geometry is applied to model the multiscale pore structures.And a two-dimensional fractal orifice-throat model with multiscale and tortuous characteristics is proposed for the seepage flow through porous media.The analytical expression for Darcy permeability of porous media is derived,which is validated by comparing with available experimental data.The results show that the Darcy permeability is significantly influenced by porosity,orifice-throat fractal dimension,minimum to maximum diameter ratio,orifice-throat ratio and tortuosity fractal dimension.The present results are helpful for understanding the seepage mechanism of multiscale porous media,and may provide theoretical basis for unconventional oil and gas exploration and development,porous phase transition energy storage composites,CO2 geological sequestration,environmental protection and nuclear waste treatment,etc.
基金supported by National Natural Science Foundation of China (Grant Nos. 50975276,50475164)National Basic Research Program of China (973 Program,Grant No. 2007CB607605)+1 种基金Doctoral Programs Foundation of Ministry of Education of China (Grant No.200802900513)Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.
基金Supported by National Natural Science Foundation of China(Grant Nos.51105304,51475364)Shaanxi Provincial Natural Science Basic Research Plan of China(Grant No.2015JM5212)
文摘Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces.
基金The authors acknowledge the support of the National Key Basic Research Project No.G1999043206“Advanced School Key Teachers Supporting Program”of the Ministry of Education,the National Climbing Program of China No.95-pre-25 and 95-pre-39the“100 Trans-Century Science and Technology Talented Persons Cultivating Program”Foundation of the Ministry of Land and Mineral Resources No.9808.
文摘Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.
基金Project supported by the National Natural Science Foundation of China (No, 49971041), the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Director Foundation of the Institute of Soil Science, CAS (No. ISSDF0004).
文摘Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.
文摘The dynamic research of landslide is one of the key Points in landslidology. In the paper,from the view point of nonlinear dynamic theory. some features of Xintan landslide, such as the distribution regularities of spatial and temporal fractal dimensions and their corresponding relationships to landslide occurring are researched. The accumulative principles of fractal dimension reduction is exploratively pointed out. The nonlinear dynamic equation of the landslide is built by analyzing the relationship between the correlation dimension and the phase space. Finally, the forecasted results and error analysis are listed. The research results are satisfactory.
基金supported by National Natural Science Foundation of China(No.51674279)China Postdoctoral Science Foundation(No.2016M602227)a grant from National Science and Technology Major Project(No.2017ZX05049-006)
文摘The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.
基金Supported by National Natural Science Foundation of China(Grant No.51775475)Hebei Provincial Natural Science Foundation of China(Grant No.E2016203463)
文摘The contact sti ness of a mechanical bonding surface is an important parameter in determining the normal and radial contact force. To improve the calculation accuracy of the contact force model, the surface roughness of the bonding surface and the energy loss that necessarily occurs during the impact process should be considered com?prehensively. To study the normal contact force of a revolute joint with clearance more accurately in the case of dry friction, a nonlinear sti ness coe cient model considering the surface roughness was established based on fractal theory, which considers the elastic, elastic?plastic, and plastic deformations of the asperities of the contact surface during the contact process. On this basis, a modified nonlinear spring damping model was established based on the Lankarani–Nikravesh contact force model. The laws influencing the surface roughness, recovery coe cient, initial velocity, and clearance size on the impact force were revealed, and were compared with the Lankarani–Nikravesh model and a hybrid model using MATLAB. The maximum impact force was obtained using a modified contact force model under di erent initial velocities, di erent clearances, and di erent degrees of surface roughness, and the calculated results were then compared with the experiment results. This study indicates that the modified model can be used more widely than other models, and is suitable for both large and small clearances. In particular, the modified model is more accurate when calculating the contact force of a revolute joint with a small clearance.
基金supported by the Natural Science Foundation of Hebei Province(No.E2021502025)。
文摘Establishing a long air gap discharge model considering the streamer-leader transition and randomness of the discharge path is of great signiflcance to improve the accuracy of discharge characteristic prediction and optimize external insulation design.Based on fractal theory and thermal ionization theory of streamer-leader transition,this work establishes a dynamic development model for the long air gap discharge streamer-leader system,which includes streamer inception,streamer development,leader inception,development of streamer-leader system and flnal jump.The positive discharge process of a 3 m rod plate is simulated to obtain the fractal distribution of the discharge path and the law of leader development for comparison with the discharge test results.The results show that the simulation model is similar to test results in the development characteristics of leader path distribution,each stage time and leader velocity.Finally,a simulation calculation of a 50%breakdown voltage of the rod-plate gap and ball-plate gap is carried out,with results fairly consistent with test data,proving the effectiveness and practicality of the model.
基金Supported by the National Natural Science Foundation of China (No. 29706010, No. 20203016).
文摘The surface morphology of Ti-Mg supported catalyst and the polyethyleneparticles are studied using scanning electron microscope(SEM) technology. The results show thateithen the catalyst's surface or polymer particle's surface is irregular and has fractalcharacteristics, which can be described by fractal parameter. The more interesting discovery is thatthe surface fractal dimension values of the polymer particles vary periodically with thepolymerization time. We call this phenomenon fractal evolution, which can be divided into the'revolution' stage and the 'evolution' stage. And then we present polymerization fractal growingmodel (PFGM), and successfully describe and/or predict the whole evolving process of thepolyethylene particle morphology under the different slurry polymerization (includingpre-polymerization) conditions without H_2.
文摘The target in this investigation is separation and delineation of geochemical anomalies for the single element Cu in Mesgaran mining area, eastern Iran. Mesgaran mining area is located in south part of Sarbishe county with about 29 Km distance to the county center. This region is part of an Ophiolite sequence and the copper anomalies seem to be related to a volcanic massive sulfide (VMS) deposit whose main part (massive sulfide Lens) has been eroded. In order to delineate Cu anomalies, the boxplot as an Exploratory Data Analysis (EDA) method and concentration-volume (C-V) Fractal modeling are employed. Both of the methods reveal low-deep anomalies which are highly correlated with geological and geophysical studies. As the main result of this study we show that Fractal modeling in spite of the Boxplot, is not recommended for complex geological settings. The proved shallow anomalies recorded by geophysical studies and defined by the used methods are in accordance to the stringer zone of a volcanic massive sulfide (VMS) deposit in Mesgaran mining area which means this region is the bottom of a VMS deposit and geochemical anomalies are related to the remained parts of the deposit.
文摘observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the pile-ups of sbear crack-dislocations. A fractal model can be used tosimulate the Riedel within Xiedel geometry, allowing the direct rneasarement of tbe ftactal dimen sions of en echelon fractare systems. The energy dissipation of tbe en ccbe1on fracture system canbe deduced using a fracil damage evo1ution model which exptalns tbe evo1ution process of en eche lon fracture svstems. The fractal nature of the fractures can be used to dcrive an accurate estimateof total energy dissipation.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
文摘A fractal pore diffusion model of fluids in porous media which is in good agreement with the experimental data of the coke-CO2 reaction, has been derived by using the Mandelbrot's fractal length-area relation. Based on the model, a new formula and its interpretation about the tortuosity of pore structures of a porous medium have been suggested, from which the fractal pore diffusion resistance has been defined. The resistance ascends obviously with the fractal pore dimension and the conversion ratio increasing, especially in the middle-latter period of fluid-solid reactions.
基金the Open Fund of the State Key Laboratory of Geological Processes and Mineral Resources of Chinaan NSERC Discovery Research Grant (ERC-OGP0183993) NSFC (No. 40373003).
文摘Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterized quantitatively by fractal models. Fractal dimensions calculated by several fractal models including box-counting model, perimeter-area (P-A) model, and number-area (N-A) model show the gradual change from outer banding to inner banding, indicating a decrease in area percentage, in irregularity, in shape and in grain size, and an increase in the numbers of grains. These results may imply an inward growth of sphalerite during mineralization, and self-organization properties are involved in the nonlinear process of mineralization.
基金Project supported by Chinese National High Technology Research and Development (863) Program (Grant No. 2007AA12Z170)National Natural Science Foundation of China (Grant No. 40706058)+1 种基金Wuhan Youth Science and Technology Chen Guang Program(Grant No. 200850731388)the wind and waves component of the Canadian Space Agency GRIP project entitled ‘Building Satellite Data into Fisheries and Oceans Operational Systems’
文摘Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed,