Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ...Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.展开更多
A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, M...A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.展开更多
The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI...The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI), the UL-94 test, thermogravimetric analysis (TGA), real time Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS). The LOI data show that SiW12 added to PP/IFR systems has a synergistic FR effect with an IFR additive named AM. The TGA data show that SiW12 apparently increases the thermal stability of the PP/IFR systems at high temperature (T > 500degreesC). The FTIR results provide the positive evidence that IFR can improve the thermal stability of PP and SiW12 can induce a higher rate of formation of phosphoric acid and its derivatives. The LRS measurements provide useful information on the carbonaceous microstructures. In short, a suitable amount of SiW12 (1.5 wt%) exerts synergistic effects with the IFR by increasing the LOI value and the thermal stability at high temperature and promoting the formation of charred structures on the burning PP surface.展开更多
The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt...The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.展开更多
To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare ...To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.展开更多
A novel charring agent,bis(1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane) phenylphosphine sulfide (BCPPS),has been synthesized,and it is combined with ammonium polyphosphate (APP) and melamine phosp...A novel charring agent,bis(1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane) phenylphosphine sulfide (BCPPS),has been synthesized,and it is combined with ammonium polyphosphate (APP) and melamine phosphate (MP) to impart flame retardance and dripping resistance for polypropylene (PP).The fire performance of the treated PP is investigated by limiting oxygen index (LOI),vertical burning test (UL-94) and cone calorimeter,and the thermal stability and thermal oxidative stability of the composite...展开更多
Nano filler synergistic intumescent flame retardant(IFR)system is an effective way to improve the flame retardant properties of polymer.In this study,the effects of montmorillonite(MMT)on the flame retardant propertie...Nano filler synergistic intumescent flame retardant(IFR)system is an effective way to improve the flame retardant properties of polymer.In this study,the effects of montmorillonite(MMT)on the flame retardant properties of polylactic acid/layered double hydroxides(PLA/LDH)and PLA/IFR/LDH were investigated.The results show that both LDH and LDH/IFR can reduce the peak heat release rate(HRR)of PLA and prolong the combustion time of PLA;When a proportionate MMT is introduced into PLA/LDH and PLA/IFR/LDH systems,respectively,MMT will not only affect the degradation process of PLA composites during combustion,but also the PLA composites can form a more stable carbon layer during combustion,which could decrease the peak HRR and prolong combustion time of PLA composite.Furthermore,when 0.5 wt%MMT is incorporated,the peak HRR of LDH/IFR/LDH composite is reduced by 16.17%and the combustion time is prolonged by about 70 s.This study can provide an opportunity to further optimize the properties of intumescent flame retardant polymer.展开更多
The use of intumescent flame retardants(IFRs)is considered an environmentally friendly and cost-effective strategy to suppress potential fire hazards from synthetic polymers.However,some conventional IFRs are neither ...The use of intumescent flame retardants(IFRs)is considered an environmentally friendly and cost-effective strategy to suppress potential fire hazards from synthetic polymers.However,some conventional IFRs are neither efficient in developing a thermally stable char layer nor reducing the release of toxic byproducts during polymer combustion.In this work,we aim to discuss the effects of zeolitic imidazolate frameworks(ZIFs)on synergistically improving the flame retardancy behaviors in polypropylene(PP)composites,including thermal degradation(evolved gas analysis),free radical reactions in the gaseous phase(in-situ chemiluminescent image analysis),and carbonaceous structure in the condensed phase(micro-morphology and composition analysis).It is found that the transition metals in ZIFs can catalytically accelerate the crosslinking reaction at a lower initial temperature and decrease the amount of hydrocarbon volatiles in the gaseous phase.Once ignited,the embedded ZIFs can firstly bridge adjacent phosphorus chains in the polymer matrix to expand crosslinking degrees and then they are anchored in the developed N-doped phospho-carbonaceous networks after pyrolysis.As a result,more compact char residue structures are observed in the condensed phase for ZIF-reinforced composites.For example,by replacing 2 wt%of IFR with ZIF-67,the peak heat release rate,peak smoke production rate,and peak CO production rate are reduced by 69%,80%,and 72%,respectively,when compared to the conventional composite.These results indicate an excellent solution to resolve inherent fire hazards associated with IFRs in polymers and achieve necessary efficiency for industrial applications.It also provides a new strategy for determining flammability characteristics and combustion mechanisms of polymer composites using in-situ chemiluminescence analysis.展开更多
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyph...The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.展开更多
Synergistic effects of layered double hydroxide (LDH) with intumescent flame retardanct (IFR) of phosphorusnitrogen (NP) compound in the polypropylene/ethylene-propylene-diene/IFR/LDH (PP/EPDM/IFR/LDH) nanocom...Synergistic effects of layered double hydroxide (LDH) with intumescent flame retardanct (IFR) of phosphorusnitrogen (NP) compound in the polypropylene/ethylene-propylene-diene/IFR/LDH (PP/EPDM/IFR/LDH) nanocomposites and related properties were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT) and thermo-gravimetric analysis (TGA). The XRD and TEM results show that the intercalated and/or exfoliated nanocomposites can be obtained by direct melt-intercalation of PP/EPDM into modified LDH and that LDH can promote the IFR additive NP to disperse more homogeneously in the polymer matrix. The SEM results provide positive evidence that more compact charred layers can be obtained from the PP/EPDM/NP/LDH sample than those from the PP/EPDM/LDH and PP/EPDM/NP samples during burning. The LOI and UL-94 rating tests show that the synergetic effects of LDH with NP can effectively increase the flame retardant properties of the PP/EPDM/NP/LDH samples. The data from the CCT and TGA tests indicate that the PP/EPDM/NP/LDH samples apparently decrease the HRR and MLR values and thus enhance the flame retardant properties and have better thermal stability than the PP/EPDM/LDH and PP/EPDM/NP samples.展开更多
基金the National Natural Science Foundation of China (No.51673059)the Science and Technology Planning Project of Henan Province (No. 212102210636)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (East China University of Technology)。
文摘Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.
文摘A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.
基金This work was supported by a grant from the Knowledge-Creating Engineering Fund of the Chinese Academy of Science.
文摘The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI), the UL-94 test, thermogravimetric analysis (TGA), real time Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS). The LOI data show that SiW12 added to PP/IFR systems has a synergistic FR effect with an IFR additive named AM. The TGA data show that SiW12 apparently increases the thermal stability of the PP/IFR systems at high temperature (T > 500degreesC). The FTIR results provide the positive evidence that IFR can improve the thermal stability of PP and SiW12 can induce a higher rate of formation of phosphoric acid and its derivatives. The LRS measurements provide useful information on the carbonaceous microstructures. In short, a suitable amount of SiW12 (1.5 wt%) exerts synergistic effects with the IFR by increasing the LOI value and the thermal stability at high temperature and promoting the formation of charred structures on the burning PP surface.
基金support from the National Natural Science Foundation of China(Grant Nos.21908031 and 51903092)the China Postdoctoral Science Foundation funded project(Grant No.2019M652884)support from Guangdong Special Support Program(Grant No.2017TX04N371)。
文摘The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.
基金Funded by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0912)。
文摘To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.
基金the National Science Fund for Distinguished Young Scholars (No.50525309).
文摘A novel charring agent,bis(1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane) phenylphosphine sulfide (BCPPS),has been synthesized,and it is combined with ammonium polyphosphate (APP) and melamine phosphate (MP) to impart flame retardance and dripping resistance for polypropylene (PP).The fire performance of the treated PP is investigated by limiting oxygen index (LOI),vertical burning test (UL-94) and cone calorimeter,and the thermal stability and thermal oxidative stability of the composite...
基金State Key Laboratory of Environmentfriendly Energy Materials,Southwest University of Science and Technology(20FKSY15,19FKSY0110)Longshan Academic Talent Research Supporting Program of SWUST(17LZX636,18LZX629).
文摘Nano filler synergistic intumescent flame retardant(IFR)system is an effective way to improve the flame retardant properties of polymer.In this study,the effects of montmorillonite(MMT)on the flame retardant properties of polylactic acid/layered double hydroxides(PLA/LDH)and PLA/IFR/LDH were investigated.The results show that both LDH and LDH/IFR can reduce the peak heat release rate(HRR)of PLA and prolong the combustion time of PLA;When a proportionate MMT is introduced into PLA/LDH and PLA/IFR/LDH systems,respectively,MMT will not only affect the degradation process of PLA composites during combustion,but also the PLA composites can form a more stable carbon layer during combustion,which could decrease the peak HRR and prolong combustion time of PLA composite.Furthermore,when 0.5 wt%MMT is incorporated,the peak HRR of LDH/IFR/LDH composite is reduced by 16.17%and the combustion time is prolonged by about 70 s.This study can provide an opportunity to further optimize the properties of intumescent flame retardant polymer.
文摘The use of intumescent flame retardants(IFRs)is considered an environmentally friendly and cost-effective strategy to suppress potential fire hazards from synthetic polymers.However,some conventional IFRs are neither efficient in developing a thermally stable char layer nor reducing the release of toxic byproducts during polymer combustion.In this work,we aim to discuss the effects of zeolitic imidazolate frameworks(ZIFs)on synergistically improving the flame retardancy behaviors in polypropylene(PP)composites,including thermal degradation(evolved gas analysis),free radical reactions in the gaseous phase(in-situ chemiluminescent image analysis),and carbonaceous structure in the condensed phase(micro-morphology and composition analysis).It is found that the transition metals in ZIFs can catalytically accelerate the crosslinking reaction at a lower initial temperature and decrease the amount of hydrocarbon volatiles in the gaseous phase.Once ignited,the embedded ZIFs can firstly bridge adjacent phosphorus chains in the polymer matrix to expand crosslinking degrees and then they are anchored in the developed N-doped phospho-carbonaceous networks after pyrolysis.As a result,more compact char residue structures are observed in the condensed phase for ZIF-reinforced composites.For example,by replacing 2 wt%of IFR with ZIF-67,the peak heat release rate,peak smoke production rate,and peak CO production rate are reduced by 69%,80%,and 72%,respectively,when compared to the conventional composite.These results indicate an excellent solution to resolve inherent fire hazards associated with IFRs in polymers and achieve necessary efficiency for industrial applications.It also provides a new strategy for determining flammability characteristics and combustion mechanisms of polymer composites using in-situ chemiluminescence analysis.
基金financially supported by the Fundamental Research Funds for the Central Universities(DL12CB07)Youth Science Fund of Heilongjiang Province(No.QC2011C102)Heilongjiang Major Research Projects(GA12A102)
文摘The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.
文摘Synergistic effects of layered double hydroxide (LDH) with intumescent flame retardanct (IFR) of phosphorusnitrogen (NP) compound in the polypropylene/ethylene-propylene-diene/IFR/LDH (PP/EPDM/IFR/LDH) nanocomposites and related properties were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT) and thermo-gravimetric analysis (TGA). The XRD and TEM results show that the intercalated and/or exfoliated nanocomposites can be obtained by direct melt-intercalation of PP/EPDM into modified LDH and that LDH can promote the IFR additive NP to disperse more homogeneously in the polymer matrix. The SEM results provide positive evidence that more compact charred layers can be obtained from the PP/EPDM/NP/LDH sample than those from the PP/EPDM/LDH and PP/EPDM/NP samples during burning. The LOI and UL-94 rating tests show that the synergetic effects of LDH with NP can effectively increase the flame retardant properties of the PP/EPDM/NP/LDH samples. The data from the CCT and TGA tests indicate that the PP/EPDM/NP/LDH samples apparently decrease the HRR and MLR values and thus enhance the flame retardant properties and have better thermal stability than the PP/EPDM/LDH and PP/EPDM/NP samples.