By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p...By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.展开更多
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of...Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.展开更多
As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,a...As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.展开更多
Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood ...Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material.展开更多
Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame reta...Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.展开更多
In this work,a bio-based flame retardant(Cy-HEDP)was synthesized from cytosine and HEDP through a facile salt-forming reaction and embedded into epoxy matrix to improve the flame retardancy and smoke suppression perfo...In this work,a bio-based flame retardant(Cy-HEDP)was synthesized from cytosine and HEDP through a facile salt-forming reaction and embedded into epoxy matrix to improve the flame retardancy and smoke suppression performance.The product Cy-HEDP was well characterized by FTIR,^(1)H and^(31)P NMR and SEM tests.On the basis of the results,by adding 15 wt%Cy-HEDP,the EP15 can pass UL-94 V-0 rating,and the total smoke production(TSP)as well as total heat release(THR)can be decreased by 61.05%(from 22.61 to 8.7 m^(2)/m^(2))and 39.44%(from 103.19 to 62.50 MJ/m^(2))in comparison to the unfilled EP,reflecting the attenuated smoke toxicity and impeded heat generation.According to the analysis results of residual char,it can be concluded that Cy-HEDP possessed the ability to promote the formation of continuous and dense char layers,which would be a physical barrier to insulate oxygen and prevent heat feedback during the combustion of EP.This work provide inspiration towards developing bio-based flame retardant,probably extending the prospects to other polymeric material system.展开更多
This paper involved five kinds of weft-knitted fabrics made from high flame-retardant acrylic/cotton(0/100,30/70,50/50,70/30,100/0).The article adopted the vertical burning method,limiting oxygen index method and Cone...This paper involved five kinds of weft-knitted fabrics made from high flame-retardant acrylic/cotton(0/100,30/70,50/50,70/30,100/0).The article adopted the vertical burning method,limiting oxygen index method and Cone Calorimeter test method for testing fabric flame retardant property.By comparison with these five fabrics,the effects on the properties of high flame-retardant acrylic fiber knitted fabrics due to the content of high flame-retardant acrylic fiber were analyzed.展开更多
This review summarizes the environmental levels,toxicity effects and analytical development of Tris(2,3-dibromopropyl)Isocyanurate(TBC).Further study is required on the environmental behavior of TBC,mechanism of toxic...This review summarizes the environmental levels,toxicity effects and analytical development of Tris(2,3-dibromopropyl)Isocyanurate(TBC).Further study is required on the environmental behavior of TBC,mechanism of toxicity and alternative development.展开更多
The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite grow...The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.展开更多
PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octa...PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) and phosphorus oxychloride in this paper. Its structure was characterized by elemental analysis. FTIR, H-1 NMR. P-31 NMR and X-ray diffraction analysis.展开更多
This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybromi...This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybrominated diphenylethers (PBDEs 17, 28, 47, 66, 99, 100, 153, 154, and 183) ranged from 2.45 to 55.9 pg/g dry weight (dw) with a mean of 26.3 pg/g dw. These levels are very low comparing with those for some cities in Europe and USA. BDE 209 and hexabromocyclododecane were the two dominant congeners, with mean concentrations of 520 pg/g dw and 1750 pg/g dw, respectively. The concentrations of the total nine PBDE congeners clearly decreased from urban areas to background, but the compositions of individual congeners differed. Proportions of heavier congeners decreased while those of lighter congeners increased, along urban-rural-background transect, providing evidence for an urban fractionation effect. Correlation analysis indicated similar sources for PBDEs, hexabromocyclododecane, and 1,2-bis(2,4,6-tribromophenoxy)-ethane from urban areas but pentabromoethylbenzene was probably present due to long-range atmospheric transport. Principal component analysis was used to determine the characteristics of the relationships among these brominated flame retardants in the field.展开更多
Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier trans...Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier transform infrared(FT-IR),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).The results show that the coating operation can effectively improve water resistance of ammonium polyphosphate(APP),and MAPP has higher residual rate than that of APP after combustion.The flame retardant action of MAPP and APP in polypropylene(PP)is investigated by the limited oxygen index(LOI),vertical burning test(UL-94),TGA,SEM,and cone calorimeter test(CCT).The LOI value of the PP/MAPP composite at the same loading is higher than that of PP/APP composite.UL 94 ratings of PP/MAPP composites are raised to V-0 at 20 wt%loading.The results of CCT also show that MAPP is more efficient than APP.The morphological structures observed by digital photos and SEM demonstrated that MAPP could be promoted to form the continuous and compact intumescent char layer.The flame retardant mechanism of PP/MAPP is also discussed.展开更多
A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, M...A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.展开更多
Three kinds of tung oil-based structural flame retardants polyols(TOFPs) were prepared by new methods in this paper. First, tung oil was used to produce monoglyceride and diglyceride by transesterification with glycer...Three kinds of tung oil-based structural flame retardants polyols(TOFPs) were prepared by new methods in this paper. First, tung oil was used to produce monoglyceride and diglyceride by transesterification with glycerol by sodium methoxide. The products after transesterification were epoxidized by peracetic acid which was in-situ generated from acetic acid and hydrogen peroxide in the presence of sulfuric acid catalyst. And then, TOFPs were prepared from epoxidized alcoholysis tung oil(EGTO) with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO), diethyl phosphate(DEP) and diethanolamine(DEA) by ring-opening reactions, respectively. GPC was used to evaluate the conversion rate, at optimum reaction conditions, selectivity for monoglyceride in transesterification. The influence of different parameters such as temperature, mole ratio or mass ratio on the conversion rate of transesterification and epoxidation were investigated. The molecular structures of TOFPs were characterized by FTIR and ~1HNMR. Finally, tung oil-based polyurethane foams(TOPUFs) were prepared by a one-shot process using TOFPs with polyisocyanate. The LOI values of TOPUFs whose content of DOPO-EGTO,DEP-EGTO and DEA-EGTO were 100 wt% can reach to 26.2%, 25.1%, and 24.4%, respectively.展开更多
The preparation technology of flame-retardant PC/ABS alloys was studied in this paper. Using a high-efficiency flame retardant system and by means of multiple-ingredient compatibilizing, PC/ABS alloys with excellent i...The preparation technology of flame-retardant PC/ABS alloys was studied in this paper. Using a high-efficiency flame retardant system and by means of multiple-ingredient compatibilizing, PC/ABS alloys with excellent impact strength and flame retardant property were prepared. The experimental results showed that by using PS-g-MAH and SMA as synergistic compatibilizers, the notched Izod impact strength and flammability of PC/ABS alloy obtained in the present work can be up to 175 J/m and UL-94 VO, respectively.展开更多
The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI...The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI), the UL-94 test, thermogravimetric analysis (TGA), real time Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS). The LOI data show that SiW12 added to PP/IFR systems has a synergistic FR effect with an IFR additive named AM. The TGA data show that SiW12 apparently increases the thermal stability of the PP/IFR systems at high temperature (T > 500degreesC). The FTIR results provide the positive evidence that IFR can improve the thermal stability of PP and SiW12 can induce a higher rate of formation of phosphoric acid and its derivatives. The LRS measurements provide useful information on the carbonaceous microstructures. In short, a suitable amount of SiW12 (1.5 wt%) exerts synergistic effects with the IFR by increasing the LOI value and the thermal stability at high temperature and promoting the formation of charred structures on the burning PP surface.展开更多
A flame retardant (DPA-SiN) containing phosphorus, nitrogen and silicon elements was synthesized. The halogen free flame retardant was incorporated into PC/ABS to improve its flame retardancy. The flame-retardant pr...A flame retardant (DPA-SiN) containing phosphorus, nitrogen and silicon elements was synthesized. The halogen free flame retardant was incorporated into PC/ABS to improve its flame retardancy. The flame-retardant properties of the PC/ABS/DPA-SiN blends were estimated by limiting oxygen index (LOI) values and CONE Calorimeter, while thermal stabilities were investi- gated through thermo gvavimetric analysis (TGA). The PC/ABS/DPA-SiN blends were thermally degraded at 400℃ for different amounts of time and studied by Fourier transform infrared spectroscopy (FTIR) to better understand the degradation behavior of PC/ABS/DPA-SiN.展开更多
The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt...The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.展开更多
Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lith...Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lithium–sulfur batteries using ether-based electrolytes often suffer from severe safety risks(i.e. combustion). Herein, we demonstrated a novel kind of flame-retardant concentrated electrolyte(6.5 M lithium bis(trifluoromethylsulphonyl)imide/fluoroethylene carbonate) for highly-safe and widetemperature lithium–sulfur batteries. It was found that such concentrated electrolyte showed superior flame retardancy, high lithium-ion transference number(0.69) and steady lithium plating/stripping behavior(2.5 m Ah cm^(-2) over 3000 h). Moreover, lithium–sulfur batteries using this flame-retardant concentrated electrolyte delivered outstanding cycle performance in a wide range of temperatures(-10 °C, 25 °C and 90 °C). This superior battery performance is mainly attributed to the LiF-rich solid electrolyte interphase formed on lithium metal anode, which can effectively suppress the continuous growth of lithium dendrites. Above-mentioned fascinating characteristics would endow this flame-retardant concentrated electrolyte a very promising candidate for highly-safe and wide-temperature lithium–sulfur batteries.展开更多
基金Funded by the Natural Science Foundation of Guangdong(Nos.2014A030313241,2014B090901068,and 2016A010103003)。
文摘By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.
基金Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008)the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No.GCXP202109)。
文摘Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.
基金the support from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(52222314)CNPC Innovation Fund(2021DQ02-1001)+2 种基金Liao Ning Revitalization Talents Program(XLYC1907144)Xinghai Talent Cultivation Plan(X20200303)Fundamental Research Funds for the Central Universities(DUT22JC02,DUT22LAB605)
文摘As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.
基金financially supported by the Key Research and Development Program of Hunan Province,China(2023NK2038)National Natural Science Foundation of China(32201485)+2 种基金Natural Science Foundation of Hunan Province,China(2022JJ40863,2023JJ60161)Scientific Research Project of Hunan Provincial Education Department,China(21B0238,22A0177)Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology,China(2023RC3159).
文摘Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material.
文摘Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.
基金the financial supports from Fundamental Research Funds for the Central Universities(2020CDJQY-A006)the National Natural Science Foundation of China(No.51603025)The Opening Fund of State Key Laboratory of Fire Science(HZ2019-KF11).
文摘In this work,a bio-based flame retardant(Cy-HEDP)was synthesized from cytosine and HEDP through a facile salt-forming reaction and embedded into epoxy matrix to improve the flame retardancy and smoke suppression performance.The product Cy-HEDP was well characterized by FTIR,^(1)H and^(31)P NMR and SEM tests.On the basis of the results,by adding 15 wt%Cy-HEDP,the EP15 can pass UL-94 V-0 rating,and the total smoke production(TSP)as well as total heat release(THR)can be decreased by 61.05%(from 22.61 to 8.7 m^(2)/m^(2))and 39.44%(from 103.19 to 62.50 MJ/m^(2))in comparison to the unfilled EP,reflecting the attenuated smoke toxicity and impeded heat generation.According to the analysis results of residual char,it can be concluded that Cy-HEDP possessed the ability to promote the formation of continuous and dense char layers,which would be a physical barrier to insulate oxygen and prevent heat feedback during the combustion of EP.This work provide inspiration towards developing bio-based flame retardant,probably extending the prospects to other polymeric material system.
文摘This paper involved five kinds of weft-knitted fabrics made from high flame-retardant acrylic/cotton(0/100,30/70,50/50,70/30,100/0).The article adopted the vertical burning method,limiting oxygen index method and Cone Calorimeter test method for testing fabric flame retardant property.By comparison with these five fabrics,the effects on the properties of high flame-retardant acrylic fiber knitted fabrics due to the content of high flame-retardant acrylic fiber were analyzed.
文摘This review summarizes the environmental levels,toxicity effects and analytical development of Tris(2,3-dibromopropyl)Isocyanurate(TBC).Further study is required on the environmental behavior of TBC,mechanism of toxicity and alternative development.
基金financially supported by the National Natural Science Foundation of China(52104197)Hongkong Scholar Program(XJ2022022)+5 种基金National Science Foundation for Post-doctoral Scientists of China(2021M691549,2021M703082)National Natural Science Foundation of China(52272396,52306090)Jiangsu Provincial Double-Innovation Doctor Program(JSSCBS20210402)Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJB620001)The Open Fund of the State Key Laboratory of Fire Science(SKLFS)Program(HZ2022-KF04)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22-0457)。
文摘The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.
文摘PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) and phosphorus oxychloride in this paper. Its structure was characterized by elemental analysis. FTIR, H-1 NMR. P-31 NMR and X-ray diffraction analysis.
基金supported by the Heilongjiang Province Postdoctoral Research Funding (No. AUGA41001074)
文摘This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybrominated diphenylethers (PBDEs 17, 28, 47, 66, 99, 100, 153, 154, and 183) ranged from 2.45 to 55.9 pg/g dry weight (dw) with a mean of 26.3 pg/g dw. These levels are very low comparing with those for some cities in Europe and USA. BDE 209 and hexabromocyclododecane were the two dominant congeners, with mean concentrations of 520 pg/g dw and 1750 pg/g dw, respectively. The concentrations of the total nine PBDE congeners clearly decreased from urban areas to background, but the compositions of individual congeners differed. Proportions of heavier congeners decreased while those of lighter congeners increased, along urban-rural-background transect, providing evidence for an urban fractionation effect. Correlation analysis indicated similar sources for PBDEs, hexabromocyclododecane, and 1,2-bis(2,4,6-tribromophenoxy)-ethane from urban areas but pentabromoethylbenzene was probably present due to long-range atmospheric transport. Principal component analysis was used to determine the characteristics of the relationships among these brominated flame retardants in the field.
基金Supported by the Natural Science Foundation of Hebei Province(B2016209059)
文摘Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier transform infrared(FT-IR),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).The results show that the coating operation can effectively improve water resistance of ammonium polyphosphate(APP),and MAPP has higher residual rate than that of APP after combustion.The flame retardant action of MAPP and APP in polypropylene(PP)is investigated by the limited oxygen index(LOI),vertical burning test(UL-94),TGA,SEM,and cone calorimeter test(CCT).The LOI value of the PP/MAPP composite at the same loading is higher than that of PP/APP composite.UL 94 ratings of PP/MAPP composites are raised to V-0 at 20 wt%loading.The results of CCT also show that MAPP is more efficient than APP.The morphological structures observed by digital photos and SEM demonstrated that MAPP could be promoted to form the continuous and compact intumescent char layer.The flame retardant mechanism of PP/MAPP is also discussed.
文摘A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.
基金Supported by the National Natural Science Foundation of China(31670577,31670578,31570563)
文摘Three kinds of tung oil-based structural flame retardants polyols(TOFPs) were prepared by new methods in this paper. First, tung oil was used to produce monoglyceride and diglyceride by transesterification with glycerol by sodium methoxide. The products after transesterification were epoxidized by peracetic acid which was in-situ generated from acetic acid and hydrogen peroxide in the presence of sulfuric acid catalyst. And then, TOFPs were prepared from epoxidized alcoholysis tung oil(EGTO) with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO), diethyl phosphate(DEP) and diethanolamine(DEA) by ring-opening reactions, respectively. GPC was used to evaluate the conversion rate, at optimum reaction conditions, selectivity for monoglyceride in transesterification. The influence of different parameters such as temperature, mole ratio or mass ratio on the conversion rate of transesterification and epoxidation were investigated. The molecular structures of TOFPs were characterized by FTIR and ~1HNMR. Finally, tung oil-based polyurethane foams(TOPUFs) were prepared by a one-shot process using TOFPs with polyisocyanate. The LOI values of TOPUFs whose content of DOPO-EGTO,DEP-EGTO and DEA-EGTO were 100 wt% can reach to 26.2%, 25.1%, and 24.4%, respectively.
文摘The preparation technology of flame-retardant PC/ABS alloys was studied in this paper. Using a high-efficiency flame retardant system and by means of multiple-ingredient compatibilizing, PC/ABS alloys with excellent impact strength and flame retardant property were prepared. The experimental results showed that by using PS-g-MAH and SMA as synergistic compatibilizers, the notched Izod impact strength and flammability of PC/ABS alloy obtained in the present work can be up to 175 J/m and UL-94 VO, respectively.
基金This work was supported by a grant from the Knowledge-Creating Engineering Fund of the Chinese Academy of Science.
文摘The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI), the UL-94 test, thermogravimetric analysis (TGA), real time Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS). The LOI data show that SiW12 added to PP/IFR systems has a synergistic FR effect with an IFR additive named AM. The TGA data show that SiW12 apparently increases the thermal stability of the PP/IFR systems at high temperature (T > 500degreesC). The FTIR results provide the positive evidence that IFR can improve the thermal stability of PP and SiW12 can induce a higher rate of formation of phosphoric acid and its derivatives. The LRS measurements provide useful information on the carbonaceous microstructures. In short, a suitable amount of SiW12 (1.5 wt%) exerts synergistic effects with the IFR by increasing the LOI value and the thermal stability at high temperature and promoting the formation of charred structures on the burning PP surface.
基金Funded by Shanghai Science and Technology Commission of China (No.05dz22303)
文摘A flame retardant (DPA-SiN) containing phosphorus, nitrogen and silicon elements was synthesized. The halogen free flame retardant was incorporated into PC/ABS to improve its flame retardancy. The flame-retardant properties of the PC/ABS/DPA-SiN blends were estimated by limiting oxygen index (LOI) values and CONE Calorimeter, while thermal stabilities were investi- gated through thermo gvavimetric analysis (TGA). The PC/ABS/DPA-SiN blends were thermally degraded at 400℃ for different amounts of time and studied by Fourier transform infrared spectroscopy (FTIR) to better understand the degradation behavior of PC/ABS/DPA-SiN.
基金support from the National Natural Science Foundation of China(Grant Nos.21908031 and 51903092)the China Postdoctoral Science Foundation funded project(Grant No.2019M652884)support from Guangdong Special Support Program(Grant No.2017TX04N371)。
文摘The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.
基金financially supported by the National Key R&D Program of China (Grant No. 2017YFE0127600)the National Natural Science Foundation of China (Nos. 51703236 and U1706229)+1 种基金the National Science Fund for Distinguished Young Scholars (No. 51625204)Key Scientific and Technological Innovation Project of Shandong (No. 2017CXZC0505)。
文摘Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lithium–sulfur batteries using ether-based electrolytes often suffer from severe safety risks(i.e. combustion). Herein, we demonstrated a novel kind of flame-retardant concentrated electrolyte(6.5 M lithium bis(trifluoromethylsulphonyl)imide/fluoroethylene carbonate) for highly-safe and widetemperature lithium–sulfur batteries. It was found that such concentrated electrolyte showed superior flame retardancy, high lithium-ion transference number(0.69) and steady lithium plating/stripping behavior(2.5 m Ah cm^(-2) over 3000 h). Moreover, lithium–sulfur batteries using this flame-retardant concentrated electrolyte delivered outstanding cycle performance in a wide range of temperatures(-10 °C, 25 °C and 90 °C). This superior battery performance is mainly attributed to the LiF-rich solid electrolyte interphase formed on lithium metal anode, which can effectively suppress the continuous growth of lithium dendrites. Above-mentioned fascinating characteristics would endow this flame-retardant concentrated electrolyte a very promising candidate for highly-safe and wide-temperature lithium–sulfur batteries.