BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear ...BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear regression(MLR)to identify risk factors for decreased estimated glomerular filtration rate(eGFR).However,medical research is increasingly relying on emerging machine learning(Mach-L)methods.The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD(NAFLD+,NAFLD-)and to rank their importance.AIM To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD.METHODS A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort,accounting for 32 independent variables including demographic,biochemistry and lifestyle parameters(independent variables),while eGFR was used as the dependent variable.Aside from MLR,three Mach-L methods were applied,including stochastic gradient boosting,eXtreme gradient boosting and elastic net.Errors of estimation were used to define method accuracy,where smaller degree of error indicated better model performance.RESULTS Income,albumin,eGFR,High density lipoprotein-Cholesterol,phosphorus,forced expiratory volume in one second(FEV1),and sleep time were all lower in the NAFLD+group,while other factors were all significantly higher except for smoking area.Mach-L had lower estimation errors,thus outperforming MLR.In Model 1,age,uric acid(UA),FEV1,plasma calcium level(Ca),plasma albumin level(Alb)and T-bilirubin were the most important factors in the NAFLD+group,as opposed to age,UA,FEV1,Alb,lactic dehydrogenase(LDH)and Ca for the NAFLD-group.Given the importance percentage was much higher than the 2nd important factor,we built Model 2 by removing age.CONCLUSION The eGFR were lower in the NAFLD+group compared to the NAFLD-group,with age being was the most important impact factor in both groups of healthy Chinese women,followed by LDH,UA,FEV1 and Alb.However,for the NAFLD-group,TSH and SBP were the 5th and 6th most important factors,as opposed to Ca and BF in the NAFLD+group.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
BACKGROUND Aging population is a significant issue in Viet Nam and across the globe.Elderly individuals are at higher risk of chronic kidney disease(CKD),especially those with diabetes.Several studies found that the e...BACKGROUND Aging population is a significant issue in Viet Nam and across the globe.Elderly individuals are at higher risk of chronic kidney disease(CKD),especially those with diabetes.Several studies found that the estimated glomerular filtration rate(eGFR)determined using creatinine-based equations was not as accurate as that determined using cystatin C-based equations.Cystatin C-based equations may be beneficial in elderly patients with an age-associated decline in kidney function.Early determination of eGFR decline and associated factors would aid in appropriate interventions to improve kidney function in elderly patients with diabetes.AIM To determine the utility of cystatin C-based equations in early detection of eGFR decline and to explore factors associated with eGFR decline in elderly patients with diabetes.METHODS This cross-sectional study included 93 participants aged≥60 years evaluated in Can Tho University of Medicine and Pharmacy Hospital between October 2022 and July 2023,including 47 and 46 participants with and without diabetes respectively,according to the American Diabetes Association criteria for diabetes.The kappa coefficient,Student’s t,Mann-Whitney,χ2,Pearson’s correlation,multivariate logistic regression,and multiple linear regression analyses were employed.RESULTS The eGFRs were lower with the cystatin C-based equations than with the creatinine-based equations.Good agreement was found between the Modification of Diet in Renal Disease(MDRD)and CKD Epidemiology Collaboration(CKD-EPI)2021 creatinine-cystatin C equations(kappa=0.66).In the diabetes group,30%of the participants had low eGFR.Both plasma glucose and glycated hemoglobin were associated with an increased risk of eGFR decline(P<0.05)and negatively correlated with eGFR(P=0.001).By multivariate logistic regression,total cholesterol,and exercise were independently associated with low eGFR.By multiple linear regression,higher plasma glucose levels were correlated with lower eGFR(P=0.026,r=-0.366).CONCLUSION Cystatin C-based equations were superior in the early detection of a decline in eGFR,and the MDRD equation may be considered as an alternative to the CKD-EPI 2021 creatinine-cystatin C equation.Exercise,plasma glucose,and total cholesterol were independently associated with eGFR in patients with diabetes.展开更多
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life s...Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contra...This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.展开更多
Dear Editor,This letter investigates a novel stealthy false data injection(FDI)attack scheme based on side information to deteriorate the multi-sensor estimation performance of cyber-physical systems(CPSs).Compared wi...Dear Editor,This letter investigates a novel stealthy false data injection(FDI)attack scheme based on side information to deteriorate the multi-sensor estimation performance of cyber-physical systems(CPSs).Compared with most existing works depending on the full system knowledge,this attack scheme is only related to attackers'sensor and physical process model.The design principle of the attack signal is derived to diverge the system estimation performance.Next,it is proven that the proposed attack scheme can successfully bypass the residual-based detector.Finally,all theoretical results are verified by numerical simulation.展开更多
Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have ...Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have received particular attentions. The networked system brings advantages such as easy to implement.展开更多
Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,Sou...Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders.展开更多
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles...Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.展开更多
This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in...This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.展开更多
Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg ...Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg and Smirina,1969).This method is based on counting the number of lines of arrested growth(LAGs)—cyclical growth marks that are usually formed annually and characterized by different optical aspects within the tubular bones.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a p...Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.展开更多
It is well known that the system (1 + 1) can be unequal to 2, because this system has both observation error and system error. Furthermore, we must provide our mustered service within our cool head and warm heart, whe...It is well known that the system (1 + 1) can be unequal to 2, because this system has both observation error and system error. Furthermore, we must provide our mustered service within our cool head and warm heart, where two states of nature are existing upon us. Any system is regarded as the two-dimensional variable error model. On the other hand, we consider that the fuzziness is existing in this system. Though we can usually obtain the fuzzy number from the possibility theory, it is not fuzzy but possibility, because the possibility function is as same as the likelihood function, and we can obtain the possibility measure by the maximal likelihood method (i.e. max product method proposed by Dr. Hideo Tanaka). Therefore, Fuzzy is regarded as the only one case according to Vague, which has both some state of nature in this world and another state of nature in the other world. Here, we can consider that Type 1 Vague Event in other world can be obtained by mapping and translating from Type 1 fuzzy Event in this world. We named this estimation as Type 1 Bayes-Fuzzy Estimation. When the Vague Events were abnormal (ex. under War), we need to consider that another world could exist around other world. In this case, we call it Type 2 Bayes-Fuzzy Estimation. Where Hori et al. constructed the stochastic different equation upon Type 1 Vague Events, along with the general following probabilistic introduction method from the single regression model, multi-regression model, AR model, Markov (decision) process, to the stochastic different equation. Furthermore, we showed that the system theory approach is Possibility Markov Process, and that the making decision approach is Sequential Bayes Estimation, too. After all, Type 1 Bays-Fuzzy estimation is the special case in Bayes estimation, because the pareto solutions can exist in two stochastic different equations upon Type 2 Vague Events, after we ignore one equation each other (note that this is Type 1 case), we can obtain both its system solution and its decision solution. Here, it is noted that Type 2 Vague estimation can be applied to the shallow abnormal decision problem with possibility reserved judgement. However, it is very important problem that we can have no idea for possibility reserved judgement under the deepest abnormal envelopment (ex. under War). Expect for this deepest abnormal decision problem, Bayes estimation can completely cover fuzzy estimation. In this paper, we explain our flowing study and further research object forward to this deepest abnormal decision problem.展开更多
基金Supported by the Kaohsiung Armed Forces General Hospital.
文摘BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear regression(MLR)to identify risk factors for decreased estimated glomerular filtration rate(eGFR).However,medical research is increasingly relying on emerging machine learning(Mach-L)methods.The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD(NAFLD+,NAFLD-)and to rank their importance.AIM To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD.METHODS A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort,accounting for 32 independent variables including demographic,biochemistry and lifestyle parameters(independent variables),while eGFR was used as the dependent variable.Aside from MLR,three Mach-L methods were applied,including stochastic gradient boosting,eXtreme gradient boosting and elastic net.Errors of estimation were used to define method accuracy,where smaller degree of error indicated better model performance.RESULTS Income,albumin,eGFR,High density lipoprotein-Cholesterol,phosphorus,forced expiratory volume in one second(FEV1),and sleep time were all lower in the NAFLD+group,while other factors were all significantly higher except for smoking area.Mach-L had lower estimation errors,thus outperforming MLR.In Model 1,age,uric acid(UA),FEV1,plasma calcium level(Ca),plasma albumin level(Alb)and T-bilirubin were the most important factors in the NAFLD+group,as opposed to age,UA,FEV1,Alb,lactic dehydrogenase(LDH)and Ca for the NAFLD-group.Given the importance percentage was much higher than the 2nd important factor,we built Model 2 by removing age.CONCLUSION The eGFR were lower in the NAFLD+group compared to the NAFLD-group,with age being was the most important impact factor in both groups of healthy Chinese women,followed by LDH,UA,FEV1 and Alb.However,for the NAFLD-group,TSH and SBP were the 5th and 6th most important factors,as opposed to Ca and BF in the NAFLD+group.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
文摘BACKGROUND Aging population is a significant issue in Viet Nam and across the globe.Elderly individuals are at higher risk of chronic kidney disease(CKD),especially those with diabetes.Several studies found that the estimated glomerular filtration rate(eGFR)determined using creatinine-based equations was not as accurate as that determined using cystatin C-based equations.Cystatin C-based equations may be beneficial in elderly patients with an age-associated decline in kidney function.Early determination of eGFR decline and associated factors would aid in appropriate interventions to improve kidney function in elderly patients with diabetes.AIM To determine the utility of cystatin C-based equations in early detection of eGFR decline and to explore factors associated with eGFR decline in elderly patients with diabetes.METHODS This cross-sectional study included 93 participants aged≥60 years evaluated in Can Tho University of Medicine and Pharmacy Hospital between October 2022 and July 2023,including 47 and 46 participants with and without diabetes respectively,according to the American Diabetes Association criteria for diabetes.The kappa coefficient,Student’s t,Mann-Whitney,χ2,Pearson’s correlation,multivariate logistic regression,and multiple linear regression analyses were employed.RESULTS The eGFRs were lower with the cystatin C-based equations than with the creatinine-based equations.Good agreement was found between the Modification of Diet in Renal Disease(MDRD)and CKD Epidemiology Collaboration(CKD-EPI)2021 creatinine-cystatin C equations(kappa=0.66).In the diabetes group,30%of the participants had low eGFR.Both plasma glucose and glycated hemoglobin were associated with an increased risk of eGFR decline(P<0.05)and negatively correlated with eGFR(P=0.001).By multivariate logistic regression,total cholesterol,and exercise were independently associated with low eGFR.By multiple linear regression,higher plasma glucose levels were correlated with lower eGFR(P=0.026,r=-0.366).CONCLUSION Cystatin C-based equations were superior in the early detection of a decline in eGFR,and the MDRD equation may be considered as an alternative to the CKD-EPI 2021 creatinine-cystatin C equation.Exercise,plasma glucose,and total cholesterol were independently associated with eGFR in patients with diabetes.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金Science and Technology Research Project of the Henan Province(222102240014).
文摘Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
基金supported by the Agence Nationale de la Recherche(ANR)(contract“ANR-17-EURE-0002”)by the Region of Bourgogne Franche-ComtéCADRAN Projectsupported by the European Research Council(ERC)project HYPATIA under the European Union's Horizon 2020 research and innovation programme.Grant agreement n.835294。
文摘This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.
基金the National Natural Science Foundation of China(62173002)the Beijing Natural Science Foundation(4222045)。
文摘Dear Editor,This letter investigates a novel stealthy false data injection(FDI)attack scheme based on side information to deteriorate the multi-sensor estimation performance of cyber-physical systems(CPSs).Compared with most existing works depending on the full system knowledge,this attack scheme is only related to attackers'sensor and physical process model.The design principle of the attack signal is derived to diverge the system estimation performance.Next,it is proven that the proposed attack scheme can successfully bypass the residual-based detector.Finally,all theoretical results are verified by numerical simulation.
基金supported in part by the National Natural Science Foundation of China (U21A2019, 61933007)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have received particular attentions. The networked system brings advantages such as easy to implement.
基金funded by the Natural Sciences and Engineering Research Council of Canada(RGPIN:2016-05964&2023-04283 to JHK)the University of Manitoba Tri-Agency Bridge Funding(#57289 to JHK)the Ricard Foundation’s Baxter Bursary(to JP)。
文摘Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2500703)Science and Technology Department Program of Jilin Province of China(Grant No.20230101121JC).
文摘Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.
文摘This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.
基金supported by the research project of Russian Science Foundation N 22-14-00227.
文摘Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg and Smirina,1969).This method is based on counting the number of lines of arrested growth(LAGs)—cyclical growth marks that are usually formed annually and characterized by different optical aspects within the tubular bones.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported in part by the National Natural Science Foundation of China(Nos.42271448,41701531)the Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNRG202317)。
文摘Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.
文摘It is well known that the system (1 + 1) can be unequal to 2, because this system has both observation error and system error. Furthermore, we must provide our mustered service within our cool head and warm heart, where two states of nature are existing upon us. Any system is regarded as the two-dimensional variable error model. On the other hand, we consider that the fuzziness is existing in this system. Though we can usually obtain the fuzzy number from the possibility theory, it is not fuzzy but possibility, because the possibility function is as same as the likelihood function, and we can obtain the possibility measure by the maximal likelihood method (i.e. max product method proposed by Dr. Hideo Tanaka). Therefore, Fuzzy is regarded as the only one case according to Vague, which has both some state of nature in this world and another state of nature in the other world. Here, we can consider that Type 1 Vague Event in other world can be obtained by mapping and translating from Type 1 fuzzy Event in this world. We named this estimation as Type 1 Bayes-Fuzzy Estimation. When the Vague Events were abnormal (ex. under War), we need to consider that another world could exist around other world. In this case, we call it Type 2 Bayes-Fuzzy Estimation. Where Hori et al. constructed the stochastic different equation upon Type 1 Vague Events, along with the general following probabilistic introduction method from the single regression model, multi-regression model, AR model, Markov (decision) process, to the stochastic different equation. Furthermore, we showed that the system theory approach is Possibility Markov Process, and that the making decision approach is Sequential Bayes Estimation, too. After all, Type 1 Bays-Fuzzy estimation is the special case in Bayes estimation, because the pareto solutions can exist in two stochastic different equations upon Type 2 Vague Events, after we ignore one equation each other (note that this is Type 1 case), we can obtain both its system solution and its decision solution. Here, it is noted that Type 2 Vague estimation can be applied to the shallow abnormal decision problem with possibility reserved judgement. However, it is very important problem that we can have no idea for possibility reserved judgement under the deepest abnormal envelopment (ex. under War). Expect for this deepest abnormal decision problem, Bayes estimation can completely cover fuzzy estimation. In this paper, we explain our flowing study and further research object forward to this deepest abnormal decision problem.