期刊文献+
共找到49,381篇文章
< 1 2 250 >
每页显示 20 50 100
Impacts of anisotropy coefficient and porosity on the thermal conductivity and P-wave velocity of calcarenites used as building materials of historical monuments in Morocco
1
作者 Abdelaali Rahmouni Abderrahim Boulanouar +6 位作者 Younes El Rhaffari Mohammed Hraita Aziz Zaroual Yves Géraud Jamal Sebbani Abdellah Rezzouk Bassem S.Nabawy 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1687-1699,共13页
It is essential to study the porosity,thermal conductivity,and P-wave velocity of calcarenites,as well as the anisotropy coefficients of the thermal conductivity and P-wave velocity,for civil engineering,and conservat... It is essential to study the porosity,thermal conductivity,and P-wave velocity of calcarenites,as well as the anisotropy coefficients of the thermal conductivity and P-wave velocity,for civil engineering,and conservation and restoration of historical monuments.This study focuses on measuring the thermal conductivity using the thermal conductivity scanning(TCS)technique and measuring the P-wave ve-locity using portable equipment.This was applied for some dry and saturated calcarenite samples in the horizontal and vertical directions(parallel and perpendicular to the bedding plane,respectively).The calcarenites were selected from some historical monuments in Morocco.These physical properties were measured in the laboratory to find a reliable relationship between all of these properties.As a result of the statistical analysis of the obtained data,excellent linear relationships were observed between the porosity and both the thermal conductivity and porosity.These relationships are characterized by relatively high coefficients of determination for the horizontal and vertical samples.Based on the thermal conductivity and P-wave velocity values in these two directions,the anisotropy coefficients of these two properties were calculated.The internal structure and the pore fabric of the calcarenite samples were delineated using scanning electron microscopy(SEM),while their chemical and mineral compositions were studied using the energy dispersive X-ray analysis(EDXA)and X-ray diffraction(XRD)techniques. 展开更多
关键词 Moroccan historical monuments Calcarenite Thermal conductivity p-wave velocity POROSITY Anisotropy coefficient Water saturation
下载PDF
P-wave velocity structure beneath reservoirs and surrounding areas in the lower Jinsha River
2
作者 Changzai Wang Jianping Wu +4 位作者 Lihua Fang Yaning Liu Jing Liu Yan Cai Poren Li 《Earthquake Science》 2023年第1期64-75,共12页
The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent eart... The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent earthquakes.After the impoundment of the reservoirs,seismic activity increased significantly.Therefore,it is necessary to study the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds,thus providing seismological support for subsequent earthquake prevention and disaster reduction work in reservoir areas.In this study,we selected the data of 7.670 seismic events recorded by the seismic networks in Sichuan.Yunnan,and Chongqing and the temporary seismic arrays deployed nearby.We then applied the double-difference tomography method to this data,to obtain the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds.The results showed that the Jinsha River basin has a complex lateral P-wave velocity structure.Seismic events are mainly distributed in the transition zones between high-and low-velocity anomalies,and seismic events are particularly intense in the Xiluodu and Baihetan reservoir areas.Vertical cross-sections through the Xiangjiaba and Xiluodu reservoir areas revealed an apparent high-velocity anomaly at approximately 6 km depth:this high-velocity anomaly plays a role in stress accumulation,with few earthquakes distributed inside the high-velocity body.After the impoundment of the Baihetan reservoir,the number of earthquakes in the reservoir area increased significantly.The seismic events in the reservoir area north of 27°N were related to the enhanced activity of nearby faults after impoundment:the earthquakes in the reservoir area south of 27°N were probably induced by additional loads(or regional stress changes),and the multiple microseismic events may have been caused by rock rupture near the main faults under high pore pressure. 展开更多
关键词 double-different tomography downstream of the Jinsha River earthquake location p-wave velocity structure reservoir earthquakes
下载PDF
Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity 被引量:9
3
作者 Mohammadreza Hemmati Nourani Mohsen Taheri Moghadder Mohsen Safari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第2期318-328,共11页
Engineering rock mass classification,based on empirical relations between rock mass parameters and engineering applications,is commonly used in rock engineering and forms the basis for designing rock structures.The ba... Engineering rock mass classification,based on empirical relations between rock mass parameters and engineering applications,is commonly used in rock engineering and forms the basis for designing rock structures.The basic data required may be obtained from visual observation and laboratory or field tests.However,owing to the discontinuous and variable nature of rock masses,it is difficult for rock engineers to directly obtain the specific design parameters needed.As an alternative,the use of geophysical methods in geomechanics such as seismography may largely address this problem.In this study,25 seismic profiles with the total length of 543 m have been scanned to determine the geomechanical properties of the rock mass in blocks Ⅰ,Ⅲ and Ⅳ-2 of the Choghart iron mine.Moreover,rock joint measurements and sampling for laboratory tests were conducted.The results show that the rock mass rating(RMR) and Q values have a close relation with P-wave velocity parameters,including P-wave velocity in field(V;).P-wave velocity in the laboratory(V;) and the ratio of V;V;(i.e.K;= V;/V;.However,Q value,totally,has greater correlation coefficient and less error than the RMR,In addition,rock mass parameters including rock quality designation(RQD),uniaxial compressive strength(UCS),joint roughness coefficient(JRC) and Schmidt number(RN) show close relationship with P-wave velocity.An equation based on these parameters was obtained to estimate the P-wave velocity in the rock mass with a correlation coefficient of 91%.The velocities in two orthogonal directions and the results of joint study show that the wave velocity anisotropy in rock mass may be used as an efficient tool to assess the strong and weak directions in rock mass. 展开更多
关键词 Rock mass classification p-wave velocity Q system Rock mass rating(RMR) Geophysical methods
下载PDF
Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments 被引量:6
4
作者 Jinyuan Zhang Yanjun Shen +5 位作者 Gengshe Yang Huan Zhang Yongzhi Wang Xin Hou Qiang Sun Guoyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期143-153,共11页
It is generally accepted that the uniaxial compressive strength(UCS)and P-wave velocity of rocks tend to decrease simultaneously with increasing temperature.However,based on a great number of statistical data and syst... It is generally accepted that the uniaxial compressive strength(UCS)and P-wave velocity of rocks tend to decrease simultaneously with increasing temperature.However,based on a great number of statistical data and systematic analysis of the microstructure variation of rocks with temperature rising and corresponding propagation mechanism of elastic wave,the results show that(1)There are three different trends for the changes of UCS and P-wave velocity of sandstone when heated from room temperature(20C or 25C)to 800C:(i)Both the UCS and P-wave velocity decrease simultaneously;(ii)The UCS increases initially and then decreases,while the P-wave velocity decreases continuously;and(iii)The UCS increases initially and then fluctuates,while the P-wave velocity continuously decreases.(2)The UCS changes at room temperaturee400C,400Ce600C,and 600Ce800C are mainly attributed to the discrepancy of microstructure characteristics and quartz content,the transformation plasticity of clay minerals,and the balance between the thermal cementation and thermal damage,respectively.(3)The inconsistency in the trends of UCS and P-wave velocity changes is caused by the change of quartz content,phase transition of water and certain minerals. 展开更多
关键词 SANDSTONE High temperature Uniaxial compressive strength(UCS) p-wave velocity DISTORTION MINERALOGY
下载PDF
A method to model the effect of pre-existing cracks on P-wave velocity in rocks 被引量:6
5
作者 Haimeng Shen Xiaying Li +1 位作者 Qi Li Haibin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期493-506,共14页
Crack closure is one of the reasons inducing changes of P-wave velocity of rocks under compression.In this context,a method is proposed to investigate the relationships among P-wave velocity,pre-existing cracks,and co... Crack closure is one of the reasons inducing changes of P-wave velocity of rocks under compression.In this context,a method is proposed to investigate the relationships among P-wave velocity,pre-existing cracks,and confining pressure based on the discrete element method(DEM).Pre-existing open cracks inside the rocks are generated by the initial gap of the flat-joint model.The validity of the method is evaluated by comparing the P-wave velocity tested on a sandstone specimen with numerical result.As the crack size is determined by the diameter of particles,the effects of three factors,i.e.number,aspect ratio,and orientation of cracks on the P-wave velocity are discussed.The results show that P-wave velocity is controlled by the(i.e.number) of open micro-cracks,while the closure pressure is determined by the aspect ratio of crack.The reason accounting for the anisotropy of P-wave velocity is the difference in crack number in measurement paths.Both of the number and aspect ratio of cracks can affect the responses of P-wave velocity to the applied confining pressure.Under confining pressure,the number of open cracks inside rocks will dominate the lowest P-wave velocity,and the P-wave velocity of the rock containing narrower cracks is more sensitive to the confining pressure.In this sense,crack density is difficult to be back-calculated merely by P-wave velocity.The proposed method offers a means to analyze the effect of pre-existing cracks on P-wave velocity. 展开更多
关键词 Pre-existing cracks p-wave velocity Discrete element method(DEM) Anisotropic rock
下载PDF
Effect of CO_(2)on coal P-wave velocity under triaxial stress 被引量:3
6
作者 Shuangjiang Zhu Jianhong Kang +1 位作者 Youpai Wang Fubao Zhou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期17-26,共10页
As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO_(2)through P-wave velocity during CO_(2)sequestration in coal.However,the effects of CO_(2)on th... As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO_(2)through P-wave velocity during CO_(2)sequestration in coal.However,the effects of CO_(2)on the coal P-wave velocity under triaxial stress are not clearly discerned.In the present study,different boundary conditions and gases were utilised to investigate the factors affecting the P-wave velocity after the interaction of coal with CO_(2).Experiments with helium indicated that the pore pressure primarily affected the P-wave velocity by altering the effective stress.Experiments with CH4 and CO_(2)indicated that matrix swelling induced-cleats porosity decline significantly promoted P-wave velocity.Moreover,CO_(2)caused a wider scale and severe weakening of coal matrix than CH4,thereby significantly decreasing the P-wave velocity,and the decline in P-wave velocity increases with vitrinite content.Furthermore,experiments under different boundary conditions showed that with the boundary condition having more constraints,the decrement of pore pressure on P-wave velocity is more weaken,whereas the improvement of matrix swelling on P-wave velocity is more evident.This study contributes to understanding the mechanism of effect of CO_(2)on P-wave velocity under triaxial stress condition and provides guidance for monitoring CO_(2)sequestration in coal. 展开更多
关键词 CO_(2)sequestration monitoring p-wave velocity COAL Triaxial stress condition
下载PDF
Three-dimensional crustal P-wave velocity structure in the Yangbi and Eryuan earthquake regions, Yunnan, China 被引量:3
7
作者 Jia Jia Qingju Wu Fuyun Wang 《Earthquake Science》 2021年第4期358-366,共9页
A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,... A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,on May 21,2021,multiple earthquakes,one with magnitude 6.4 and several at 5.0 or above,occurred in Yangbi County,Dali Bai Autonomous Prefecture,Yunnan Province,China.All of these occurred in the Weixi-QiaohouWeishan fault zone.In this study,1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic identification technology and the first arrivals were picked up manually.Following this,a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality Pwave relative arrivals were collected for joint inversion via the double difference tomography method.This was done to obtain the regional three-dimensional fine crustal P-wave velocity structure.The results show that the travel time residuals before and after inversion decreased from the initial–0.1–0.1 s to–0.06–0.06 s.The upper crust in the study area,which exhibited a low-velocity anomaly,corresponded to the basin region;this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.Results also showed some correlation between the distribution of the earthquakes and velocity structure,as there was a lowvelocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions.In addition,earthquakes occurred predominantly in the highlow velocity abnormal transition zone.The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress,thus leading to the occurrence of earthquakes. 展开更多
关键词 Yangbi and Eryuan earthquakes double difference tomography three-dimensional p-wave velocity structure Weixi-Qiaohou-Weishan fault.
下载PDF
P-Wave Velocity in Rocks of Dabieshan, China at High Pressure and High Temperature: Constraints for Composition of Lower Crust and Crust-Mantle Recycling 被引量:1
8
作者 Zhao Zhidan Zhou Wenge +2 位作者 Xie Hongsen Guo Jie Xu Zuming(Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002)Zhang Zeming(Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037) 《Journal of Earth Science》 SCIE CAS CSCD 1999年第4期295-298,共4页
P-wave velocities in the rocks of Dabieshan, central China were measured at pressures up to 5.0 GPa and temperatures up to 1 300℃. The ultrahigh pressure eclogites have the highest density and P-wave velocity (Vp) an... P-wave velocities in the rocks of Dabieshan, central China were measured at pressures up to 5.0 GPa and temperatures up to 1 300℃. The ultrahigh pressure eclogites have the highest density and P-wave velocity (Vp) and lower anisotropy. Pressure derivatives of the eclogites range from 0. 22 to 0. 33 km. s-1 GPa-1. Average temperature derivative of the eclogites is - 3. 41×10-4 km. s-1. °C -1. The density and VP of the eclogites imply that there will be two united possibilities related to crust-mantle recycling after the eclogite formed in the deep lithosphere. One is that some eclogites in the deep lithosphere were detached and sunk into deeper mantle due to their denser density. Another is that some eclogites returned to the crust and exposed to the surface.Small amounts (<12%) of eclogites may be still exist in the deep crust beneath Dabieshan based on our calculation. 展开更多
关键词 ECLOGITE p-wave velocity density high pressure high temperature lower crust
下载PDF
2-D P-wave velocity structure in the mideast segment of Zhangjiakou-Bohai tectonic zone: Anxin-Xianghe-Kuancheng DSS profile 被引量:1
9
作者 WANG Fu-yun(王夫运) +13 位作者 ZHANG Xian-kang(张先康) CHEN Yong(陈颙) LI Li(李丽) CHEN Qi-fu(陈棋福) ZHAO Jin-ren(赵金仁) ZHANG Jian-shi(张建狮) LIU Bao-feng(刘宝峰) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第z1期32-42,共11页
In order to get the 3-D fine velocity structure in the Capital-circle area of China, 6 explosions, ranging from 1800 to 2500 kg, were conducted and recorded by an array of 240 seismographs. A reflection/refraction su... In order to get the 3-D fine velocity structure in the Capital-circle area of China, 6 explosions, ranging from 1800 to 2500 kg, were conducted and recorded by an array of 240 seismographs. A reflection/refraction survey was carried out along the profile extending from Anxin county, Hebei Province northeastward to Yanshan Mountains, crossing the Zhangjiakou-Bohai tectonic zone. The 2-D velocity structure of P wave was imaging along the profile. The results show that abnormality exists in the deep structure of the Zhangjiakou-Bohai tectonic zone: The base- ment is significantly depressed, the interfaces and Moho are uplifted, and a strong velocity gradient layer is existed above the Moho that may be dislocated by deep fault. The crust of Huabei basin is thin and low velocity body ex- ists in the crust. The Yanshan Mountains′ crust is thick, the layers in the crust are quite clear and the velocity in the layer is homogeneous. Huabei basin differs from Yanshan Mountains in structure. 展开更多
关键词 D p-wave velocity structure artificial explosion Capital-circle area of China Zhangjia- kou-Bohai tectonic zone crust-mantle transition zone
下载PDF
Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in central-western China 被引量:1
10
作者 YANG Zhi-xian(杨智娴) +9 位作者 YU Xiang-wei(于湘伟) ZHENG Yue-jun(郑月军) CHEN Yun-tai(陈运泰) NI Xiao-xi(倪晓晞) Winston CHAN 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第1期20-30,共11页
A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity m... A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity model and earthquake relocation for this region are obtained using Pg and Sg phase readings of 9 988 earthquakes from 1992 to 1999 recorded at 193 seismic stations within central-western China by SPHYPIT90 and SPHREL3D90 programs. A lateral inhomogeneous structure of P-wave velocity in this region was obtained. Ob-vious contrast of P-wave velocities was revealed on both sides of active fault zones. Relocated epicenters of 6 459 events show clear lineation along active faults, which indicated a close correlation between seismicity and the active faults in this region. Focal depths of 82% relocated events ranged from 0 to 20 km, which is in good agreement with that from double-difference earthquake location algorithm. 展开更多
关键词 simultaneous inversion 3-D p-wave velocity structure earthquake relocation central-western China
下载PDF
Three-dimensional P-wave Velocity Structure Modelling of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt: Crustal Architecture and Metallogenic Implications 被引量:1
11
作者 CHEN Anguo LÜ Qingtian +4 位作者 ZHOU Taofa DU Jianguo DING Juan YAN Jiayong LU Zhitang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1808-1821,共14页
In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Netwo... In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there. 展开更多
关键词 3D p-wave velocity structure double-difference seismic tomography crust-upper mantle Dabie Orogen Middle and Lower Reaches of the Yangtze River Metallogenic Belt
下载PDF
Three-Dimensional P-Wave Velocity Structure of the Crust of North China
12
作者 魏文博 叶高峰 +3 位作者 李艳军 金胜 邓明 景建恩 《Journal of China University of Geosciences》 SCIE CSCD 2007年第3期257-268,共12页
Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometer... Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones lie in the Haihe (海河) plain and Bohai (渤海) Bay. Although the geological structure of the sedimentary overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe plain gradually disappear with increasing depth, and the Shanxi (山西) graben in the west is mainly characterized by relatively low velocity anomalies. Bounded by the Taihang (太行) Mountains, the eastern and western parts differ in structural trend of stratum above the crystalline basement. The structural trend of the Huanghuaihai (黄淮海) block in the east is mainly north-east, while that of the Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal thickness. In the southern edge of the Inner Mongolia block and the south of the Yanshan (燕山) block,the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern edge of the Ordos block, the structure of Moho is relatively complex, presenting a pattern of fold trending nearly towards north-west with alternating convexes and concaves. Beneath the Huanghuaihai block, the middle and northern parts of the North China rift zone, the Moho is the shallowest in the entire region, with alternating uplifts and depressions in its shape. For the anteclise zone in the west of Shandong (山东) Province, the Moho is discontinuous for the fault depression extending in the north-west direction along Zaozhuang (枣庄) -Qufu (曲阜). 展开更多
关键词 North China CRUST deep seismic sounding three-dimensional p-wave velocity structure
下载PDF
Three-dimensional P-wave velocity structure of the crust beneath Hainan Island and its adjacent regions,China 被引量:10
13
作者 李志雄 雷建设 +3 位作者 赵大鹏 武巴特尔 沈繁銮 丘学林 《地震学报》 CSCD 北大核心 2008年第5期441-448,共8页
Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions... Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper. 展开更多
关键词 三维速度 P波 地壳结构 海南岛
下载PDF
Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in cen-tral-western China 被引量:26
14
作者 杨智娴 于湘伟 +3 位作者 郑月军 陈运泰 倪晓晞 Winston CHAN 《地震学报》 CSCD 北大核心 2004年第1期19-29,共11页
采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行... 采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行了地震的重新定位.反演结果揭示了中国中西部地区地震P波速度结构明显的横向不均匀性,这些不同深度上波速的横向变化多以该地区的活动断裂为分界线.可以看出活动断裂两侧存在明显的速度反差.通过重新定位,得到了6459次地震的震源参数,这些精确定位的地震震中明显沿该区活动断裂呈现条带状分布,其范围和尺度清晰地表示了这一地区地震活动与活动断裂的紧密关系.其中,82%重新精确定位的事件的震源深度在20km以内.这一结果与笔者用双差地震定位法得到的重新定位的震源深度分布相一致. 展开更多
关键词 地震重新定位 P波速度结构 反演 双差地震定位法 地震活动 活动断裂
下载PDF
Imaging 3-D crustal P-wave velocity structure of western Yunnan with bulletin data 被引量:16
15
作者 Jing Huang Xuejun Liu +1 位作者 Youjin Su Baoshan Wang 《Earthquake Science》 CSCD 2012年第2期151-160,共10页
Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting a... Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas. 展开更多
关键词 regional earthquake 3-D velocity structure later phase Yunnan region
下载PDF
3D P-wave Velocity Structure and Active Tectonics in the Xinfengjiang Area of Guangdong 被引量:1
16
作者 Ye Xiuwei Huang Yuanmin Liu Jiping 《Earthquake Research in China》 CSCD 2017年第4期441-454,共14页
In this paper,we determined an earthquake sequence location in the Xingfengjiang area from June,2007 to July,2014 and the 3 D P-wave velocity structure by a simultaneous inversion method. On that basis,we studied the ... In this paper,we determined an earthquake sequence location in the Xingfengjiang area from June,2007 to July,2014 and the 3 D P-wave velocity structure by a simultaneous inversion method. On that basis,we studied the occurrence features of active tectonics and the earthquake source mechanism. The results show that the reservoir fracture system has a tendency to increase with gradual depth from southeast to northwest,consistent with gravitational field research results. There are 4 high velocity zones( HVZ) under the depth of the 7 km-12 km crust between the Xinfengjiang Reservoir dam and Xichang District,Dongyuan. The max velocity of the biggest HVZ which is under Xichang is 6. 3 km/s. Under the reservoir dam there is a strong tectonic deformation zone,as the center exit Renzishi fault( F_2),Nanshan-Aotou faults( F_4),Heyuan fault( F_1) and Shijiao-Xingang-Baitian fault( F_5),7 earthquakes with M_L≥ 5. 0( including M 6. 1 in March,1962) occurred at the high gradient zone of the HVZ Ⅲ and HVZ Ⅳ edge which has been under the reservoir dam since 1960, with relativity energy releasing more thoroughly. Moderate seismic activity occurred at the HVZ Ⅰ edge which has been under Xichang since 2012,and is a danger zone for M5. 0 earthquakes in the future. 展开更多
关键词 p-wave velocity STRUCTURE Active TECTONICS Simultaneous INVERSION method The Xinfengjiang RESERVOIR
下载PDF
Effect of the Number and Orientation of Fractures on the P-Wave Velocity Diminution: Application on the Building Stones of the Rabat Area (Morocco) 被引量:2
17
作者 Hamid El Azhari Iz-Eddine El Amrani El Hassani 《Geomaterials》 2013年第3期71-81,共11页
This study is focused on two types of Moroccan rocks, among the most widely used as building stones: the calcarenite of Salé (CS) and the marble of oued Akrech (MA). The two rocks, lithologically different, show ... This study is focused on two types of Moroccan rocks, among the most widely used as building stones: the calcarenite of Salé (CS) and the marble of oued Akrech (MA). The two rocks, lithologically different, show a clear contrast of their P-wave velocities (Vp): 3.90 vs 5.10 km/s at dry state and 4.29 vs 5.64 km/s at saturation. The “Artificial fractures” created in the two rock types reveal that their Vp undergo diminutions which the rates vary depending of the number and the plane orientation of the fractures. In the CS, Vp shows an increasing of cumulative diminution (Dc) according to the number of fractures, but with a variable rate of unitary diminution (Du) from one fracture to the other. This defines a linear regression with a low coefficient of determination (Dc = 10.18NbFr + 10.96;r2 = 0.87). The mode of the Vp evolution would be related to the roughness of fractures surface, which itself depends upon the petrographic nature of the calcarenite (friable structure, high porosity and heterogenous composition). The MA manifested an increasing Dc with a fairly constant rate of Du from a fracture to another, giving a regression line with a high coefficient of determination (Dc = 12.17NbFr – 10.69;r2 = 0.99). This steady diminution of Vp would be related to the granoblastic texture and the monomineral composition of the marble, which engender smoother fracture surfaces. The rates of Vp diminution also depend on the orientation plane of the fractures relative to the direction of wave propagation. The fractures parallel (θ = 0°) amplify slightly the Vp, playing a significant role of “waveguide”. The fractures oriented at 45° lead to a diminution lower than those of fractures oriented at 25° and 90°. The same trend of diminution, but at variable rates, appears on the samples of the two types of stones at dry and saturated state. This can be explained by the compressive nature of P-waves, which obey the physic laws of the transmission of the constraints in the solid mediums. 展开更多
关键词 FRACTURE Diminution p-wave velocity Calcarenite MARBLE Morocco
下载PDF
P-wave velocity structure in the crust and the uppermost mantle of Chao Lake region of the Tan-Lu Fault inferred from teleseismic arrival time tomography 被引量:1
18
作者 Bem Shadrach Terhemba Huajian Yao +3 位作者 Song Luo Lei Gao Haijiang Zhang Junlun Li 《Earthquake Science》 2022年第6期427-447,共21页
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth part... Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion. 展开更多
关键词 teleseismic arrival time tomography v P velocity structure crust and uppermost mantle Tan-Lu Fault Chao Lake
下载PDF
Prediction of Porosity and Density of Calcarenite Rocks from P-Wave Velocity Measurements
19
作者 Abdelaali Rahmouni Abderrahim Boulanouar +4 位作者 Mohamed Boukalouch Yves Géraud Abderrahim Samaouali Mimoun Harnafi Jamal Sebbani 《International Journal of Geosciences》 2013年第9期1292-1299,共8页
Petrophysical proprieties such as porosity, density, permeability and saturation have a marked impact on acoustic proprieties of rocks. Hence, there has been recently a strong incentive to use new geophysical techniqu... Petrophysical proprieties such as porosity, density, permeability and saturation have a marked impact on acoustic proprieties of rocks. Hence, there has been recently a strong incentive to use new geophysical techniques to invert such properties from seismic or sonic measurements for rocks characterization. The P-wave velocity, which is non-destructtive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the geotechnical properties of rock materials. The P-wave velocity of a rock is closely related to the intact rock properties, and been measuring the velocity in rock masses describes the rock structure and texture. The present work deals with the use of a simple and non-destructive technique, ultrasonic velocity, to predict the porosity and density of calcarenite rocks that are characteristic in historical monument. The ultrasonic test is based on measuring the propagation time of a P-wave in the longitudinal direction. Good correlations between P-wave velocity, porosity and density were found, which indicated them as an appropriate technique for estimating the porosity and density. 展开更多
关键词 Calcarenite ROCKS POROSITY DENSITY p-wave velocity Regression Analysis T STUDENT
下载PDF
P-wave velocity prediction in porous medium with liquid-pocket patchy saturation
20
作者 Jiawei LIU Weitao SUN Jing BA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第11期1427-1440,共14页
It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical... It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-water- saturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures. 展开更多
关键词 White's model porous medium p-wave dispersion liquid pocket
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部