In this paper, Orlicz space endowed with Orlicz norm are discussed. We discovered that P-convexity, O-convextiy, Q-convexity, superreflexirity and teflexivity are equivalent.
The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the...The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the points of Hp. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone(Hp) p of Hpfor 0 < p ≤ 1, and obtains the subrepresentation theorem(Hp) p L∞(T, C p).展开更多
文摘In this paper, Orlicz space endowed with Orlicz norm are discussed. We discovered that P-convexity, O-convextiy, Q-convexity, superreflexirity and teflexivity are equivalent.
基金supported by the National Natural Science Foundation of China(No.10871141)
文摘The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the points of Hp. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone(Hp) p of Hpfor 0 < p ≤ 1, and obtains the subrepresentation theorem(Hp) p L∞(T, C p).