Phosphorus doped(P-doped) nanogranular SiO2 films have been deposited by plasma-enhanced chemical vapor deposition. A high proton conductivity of;.2x10-4S/cm and a large electric double layer(EDL) capacitance of;....Phosphorus doped(P-doped) nanogranular SiO2 films have been deposited by plasma-enhanced chemical vapor deposition. A high proton conductivity of;.2x10-4S/cm and a large electric double layer(EDL) capacitance of;.2μF/cm2 have been obtained. Flexible coplanar-gate EDL thin film transistors(TFTs) gated by P-doped nanogranular SiO2 films are self-assembled on plastic substrates at room temperature. Due to the big EDL capacitance,such TFTs show ultra-low voltage operation of 1 V,a large field-effect mobility of 18.9 cm2/Vs,a small subthreshold swing of 85 m V/decade and a high current on/off ratio of 107. Furthermore,the EDL TFT could work in dual coplanar gate mode. AND logic operation is realized. Our results demonstrate that such TFTs gated by P-doped nanogranular SiO2 films have potential applications in low-power flexible electronics.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51302276)the Zhejiang Provincial Natural Science Foundation of China (Grant No.LY14A040009)in part by the Foundation of the Science and Technology Bureau of Wuhan City (Grant No.2014010101010006)
文摘Phosphorus doped(P-doped) nanogranular SiO2 films have been deposited by plasma-enhanced chemical vapor deposition. A high proton conductivity of;.2x10-4S/cm and a large electric double layer(EDL) capacitance of;.2μF/cm2 have been obtained. Flexible coplanar-gate EDL thin film transistors(TFTs) gated by P-doped nanogranular SiO2 films are self-assembled on plastic substrates at room temperature. Due to the big EDL capacitance,such TFTs show ultra-low voltage operation of 1 V,a large field-effect mobility of 18.9 cm2/Vs,a small subthreshold swing of 85 m V/decade and a high current on/off ratio of 107. Furthermore,the EDL TFT could work in dual coplanar gate mode. AND logic operation is realized. Our results demonstrate that such TFTs gated by P-doped nanogranular SiO2 films have potential applications in low-power flexible electronics.