In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection be...In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.展开更多
Let S(P) be a P-inversive semigroup. In this paper we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. We prove that any strong P-congruence on S(P) can present a P-kernel nor...Let S(P) be a P-inversive semigroup. In this paper we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. We prove that any strong P-congruence on S(P) can present a P-kernel normal system; conversely any P-kernel normal system of S(P) can determine a strong P-congruence.展开更多
基金the Science Research Foundation of Qingdao Technological University(C2002-214)
文摘In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.
文摘Let S(P) be a P-inversive semigroup. In this paper we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. We prove that any strong P-congruence on S(P) can present a P-kernel normal system; conversely any P-kernel normal system of S(P) can determine a strong P-congruence.