Lignin is a renewable carbon resource to produce arenes due to its abundant aromatic structures.For the liquid-phase hydrodeoxygenation(HDO)based on metallic catalysts,the preservation of aromatic rings in lignin or i...Lignin is a renewable carbon resource to produce arenes due to its abundant aromatic structures.For the liquid-phase hydrodeoxygenation(HDO)based on metallic catalysts,the preservation of aromatic rings in lignin or its derivatives remains a challenge.Herein,we synthesized Mndoped Cu/Al_(2)O_(3) catalysts from layered double hydroxides(LDHs)for liquid-phase HDO of lignin-derived anisole.Mn doping significantly enhanced the selective deoxygenation of anisole to arenes and inhibited the saturated hydrogenation on Cu/Al_(2)O_(3).With Mn doping increasing,the surface of Cu particles was modified with MnO_(x) along with enhanced generation of oxygen vacancies(Ov).The evolution of active sites structure led to a controllable adsorption geometry of anisole,which was beneficial for increasing arenes selectivity.As a result,the arenes selectivity obtained on 4Cu/8Mn4AlO_(x) was increased to be more than 6 folds of that value on 4Cu/4Al_(2)O_(3) over the synergistic sites between metal Cu and Ov generated on MnO_(x).展开更多
The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remai...The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remains obscure.In this work,the kinetic models including power-law model and Langmuir-Hinshelwood-Hougen-Watson(LHHW)model of NMA hydrogenation to AMA catalyzed by Raney nickel catalyst were investigated.All experiments were carried out under the elimination of mass transfer resistance within the temperature range of 70–100°C and the hydrogen pressure of 0.8–1.5 MPa.The reaction was found to follow 0.52-order kinetics with respect to the NMA concentration and 1.10-order kinetics in terms of hydrogen pressure.Based on the LHHW model,the dual-site dissociation adsorption of hydrogen was analyzed to be the rate determining step.The research of intrinsic kinetics of NMA to AMA provides the guidance for the reactor design and inspires the catalyst modification.展开更多
The synthesis of anisole by vapor phase methylation of phenol with methanol over activated alumina(AA) supported catalysts was investigated in a fixed bed reactor. KH2PO4/AA gave the best performance among the eight...The synthesis of anisole by vapor phase methylation of phenol with methanol over activated alumina(AA) supported catalysts was investigated in a fixed bed reactor. KH2PO4/AA gave the best performance among the eight tested catalysts. The catalyst was prepared by loading KH2PO4 on AA and then calcining at the optimized temperature of 700 °C for 8 h. In the vapor phase reaction, the level of anisole yield(LAY) has a maximum at 400–450 °C when the temperature varied from 300 to 500°C, which decreased slightly with increasing WHSV and increased distinctly with increasing mole fraction of methanol. On comparing O‐methylation and C‐methylation of phenol, a low temperature,high WHSV(short residence time), and a low methanol concentration over the KH2PO4/AA catalyst with higher K contents were found to increase anisole selectivity by O‐methylation of phenol. The reaction routes to the major products and the catalytic mechanism were suggested, and a ‘K‐acid'bifunctional process may be a critical factor to the formation of anisole.展开更多
Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction ...Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction (HDO) of anisole as model reaction. Ni/α-Al2O3 was found to be the highest active catalyst for HDO of anisole. Under the optimal conditions, the anisole conversion is 93.25% and the hydrocarbon yield is 90.47%. Catalyst characteriza-tion using H2-TPD method demonstrates that Ni/α-Al2O3 catalyst possesses more amount of active metal Ni than those of other investigated catalysts, which can enhance the cat-alytic activity for hydrogenation. Furthermore, it is found that the Ni/α-Al2O3 catalyst has excellent repeatability, and the carbon deposited on the surface of catalyst is negligible.展开更多
The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of-the current on the aniso...The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of-the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons originating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700℃ and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.展开更多
Methoxyacetophenone(4 MAP) was synthesized by the acylation of anisole with acetic anhydride in the presence of HY zeolite. The addition of an appropriate amount of some solvent such as dichloromethane, chloroform, c...Methoxyacetophenone(4 MAP) was synthesized by the acylation of anisole with acetic anhydride in the presence of HY zeolite. The addition of an appropriate amount of some solvent such as dichloromethane, chloroform, carbon disulfide or chlorobenzene to the reaction system can improve the yield of the acylated product to a certain extent. HY zeolite used can be recovered, and reused after being regenerated, obtaining almost the same yield of 4 MAP as the fresh zeolite.展开更多
A series of aromatic ketones 4-acyl anisole were synthesized with high yield by using carboxylic acids as acylating agents and a HY zeolite as catalyst.
SiO2‐supported monometallic Ni and bimetallic Ni‐In catalysts were prepared and used for hydrodeoxygenation of anisole,which was used as a model bio‐oil compound,for BTX(benzene,toluene,and xylene)production.The ef...SiO2‐supported monometallic Ni and bimetallic Ni‐In catalysts were prepared and used for hydrodeoxygenation of anisole,which was used as a model bio‐oil compound,for BTX(benzene,toluene,and xylene)production.The effects of the Ni/In ratio and Ni content on the structures and performances of the catalysts were investigated.The results show that In atoms were incorporated into the Ni metal lattice.Although the Ni‐In bimetallic crystallites were similar in size to those of monometallic Ni at the same Ni content,H2uptake by the bimetallic Ni‐In catalyst was much lower than that by monometallic Ni because of dilution of Ni atoms by In atoms.Charge transfer from In to Ni was observed for the bimetallic Ni‐In catalysts.All the results indicate intimate contact between Ni and In atoms,and the In atoms geometrically and electronically modified the Ni atoms.In the hydrodeoxygenation of anisole,although the activities of the Ni‐In bimetallic catalysts in the conversion of anisole were lower than that of the monometallic Ni catalyst,they gave higher selectivities for BTX and cyclohexane as a result of suppression of benzene ring hydrogenation and C–C bond hydrogenolysis.They also showed lower methanation activity.These results will be useful for enhancing carbon yields and reducing H2consumption.In addition,the lower the Ni/In ratio was,the greater was the effect of In on the catalytic performance.The selectivity for BTX was primarily determined by the Ni/In ratio and was little affected by the Ni content.We suggest that the performance of the Ni‐In bimetallic catalyst can be ascribed to the geometric and electronic effects of In.展开更多
The cleavage of the alkoxy(Ar-O-R) ether bond present in anisole is an interesting hydrodeoxygenation(HDO) reaction, since this asymmetric group contains two different C–O bonds, Caryl–O or Calkyl–O, which could po...The cleavage of the alkoxy(Ar-O-R) ether bond present in anisole is an interesting hydrodeoxygenation(HDO) reaction, since this asymmetric group contains two different C–O bonds, Caryl–O or Calkyl–O, which could potentially cleave. Recent work on the HDO of anisole over Pt, Ru, and Fe catalysts has shown that a common phenoxy surface intermediate is formed on all three metals. The subsequent reaction path of this intermediate varies from metal to metal, depending on the metal oxophilicity. Over the less oxophilic Pt, phenol is the only primary product. By contrast, on the more oxophilic Fe catalyst, the sole primary product is benzene instead of phenol. On Ru, with intermediate oxophilicity, both benzene and phenol are primary products. In this contribution, we have investigated Rh catalysts of varying surface nanostructures. A combination of experimental measurements and computational calculations was used to explore the effects of varying metal coordination number, an additional parameter that can be used to control the oxophilicity of a metal. The results confirm that metal oxophilicity is a good descriptor for HDO performance of metal catalysts and it can be controlled via selection of metal type and/or metal extent of coordination. Small Rh metal clusters with low coordination metal sites are more active for the deoxygenation pathway but also quickly deactivated while large clusters with high coordination sites are more active toward hydrogenation and more stable.展开更多
The Ni-Nb_(2)O_(5)nanocatalysts have been prepared by the solgel method,and the catalytic hydrodeoxygenation(HDO)performance of anisole as model compound is studied.The results show that Nb exists as amorphous Nb_(2)O...The Ni-Nb_(2)O_(5)nanocatalysts have been prepared by the solgel method,and the catalytic hydrodeoxygenation(HDO)performance of anisole as model compound is studied.The results show that Nb exists as amorphous Nb_(2)O_(5)species,which can promote Ni dispersion.The addition of Nb_(2)O_(5)increases the acidity of the catalyst.However,when the content of niobium is high,there is an inactive Nb-Ni-O mixed phase.The size and morphology of Ni grains in catalysts are different due to the difference of Nb/Ni molar ratio.The Ni_(0.9)Nb_(0.1)sample has the largest surface area of 170.8 m^(2)·g^(-1)among the catalysts prepared in different Nb/Ni molar ratios,which is mainly composed of spherical nanoparticles and crack pores.The HDO of anisole follows the reaction route of the hydrogenation HYD route.The Ni_(0.9)Nb_(0.1)catalyst displayed a higher HDO performance for anisole than Ni catalyst.The selectivity to cyclohexane over the Ni_(0.9)Nb_(0.1)sample is about 10 times that of Ni catalyst at 220℃and 3 MPa H_(2).The selectivity of cyclohexane is increased with the increase of reaction temperature.The anisole is almost completely transformed into cyclohexane at 240℃,3 MPa H_(2)and 4 h.展开更多
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ...The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.展开更多
Reman spectroscopy is used as a tool to monitor the reaction between N,N'-di(pmethyl)monothioxamides and 1,3-diamine trimethylene and to detect the reaction intermediate. By observing changes of 1024 cm^(-1) C=S b...Reman spectroscopy is used as a tool to monitor the reaction between N,N'-di(pmethyl)monothioxamides and 1,3-diamine trimethylene and to detect the reaction intermediate. By observing changes of 1024 cm^(-1) C=S band and appearance of a new bend at around 1720 cm^(-1), the reaction mechanism is discussed.展开更多
The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported cataly...The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported catalysts increases with the Ni content in the NiCu phase,related to Ni’s hydrogenation capacity.In contrast,on aγ-Al_(2)O_(3) support,the activity decreases with the Ni content.Overall,Al_(2)O_(3)-supported catalysts,exhibiting a smaller NiCu alloy particle size,are more active than SiO_(2)-supported ones.In terms of selectivity,SiO_(2)-supported catalysts mainly hydrogenate anisole to methoxycyclohexane,while,particularly at higher conversions,γ-Al_(2)O_(3)-supported catalysts are able to further convert methoxycyclohexane to cyclohexane,demonstrating the importance of acid sites for low-temperature HDO.The Ni/Cu ratio also steers the selectivity,but not the catalyst stability.Deactivation phenomena are only support dependent:while on SiO_(2)-supported catalysts,active site sintering occurs,attributed to weak stabilization of metal particles by the support,acid catalyzed coking is the main cause of deactivation on theγ-Al_(2)O_(3)-supported catalysts.展开更多
基金supported by National Natural Science Foundation of China (21938008).
文摘Lignin is a renewable carbon resource to produce arenes due to its abundant aromatic structures.For the liquid-phase hydrodeoxygenation(HDO)based on metallic catalysts,the preservation of aromatic rings in lignin or its derivatives remains a challenge.Herein,we synthesized Mndoped Cu/Al_(2)O_(3) catalysts from layered double hydroxides(LDHs)for liquid-phase HDO of lignin-derived anisole.Mn doping significantly enhanced the selective deoxygenation of anisole to arenes and inhibited the saturated hydrogenation on Cu/Al_(2)O_(3).With Mn doping increasing,the surface of Cu particles was modified with MnO_(x) along with enhanced generation of oxygen vacancies(Ov).The evolution of active sites structure led to a controllable adsorption geometry of anisole,which was beneficial for increasing arenes selectivity.As a result,the arenes selectivity obtained on 4Cu/8Mn4AlO_(x) was increased to be more than 6 folds of that value on 4Cu/4Al_(2)O_(3) over the synergistic sites between metal Cu and Ov generated on MnO_(x).
基金the National Natural Science Foun-dation of China(22022802 and 22288102).
文摘The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remains obscure.In this work,the kinetic models including power-law model and Langmuir-Hinshelwood-Hougen-Watson(LHHW)model of NMA hydrogenation to AMA catalyzed by Raney nickel catalyst were investigated.All experiments were carried out under the elimination of mass transfer resistance within the temperature range of 70–100°C and the hydrogen pressure of 0.8–1.5 MPa.The reaction was found to follow 0.52-order kinetics with respect to the NMA concentration and 1.10-order kinetics in terms of hydrogen pressure.Based on the LHHW model,the dual-site dissociation adsorption of hydrogen was analyzed to be the rate determining step.The research of intrinsic kinetics of NMA to AMA provides the guidance for the reactor design and inspires the catalyst modification.
基金supported by the National Natural Science Foundation of China(51476180)the National Basic Research Program of China(973Program2014CB744304)~~
文摘The synthesis of anisole by vapor phase methylation of phenol with methanol over activated alumina(AA) supported catalysts was investigated in a fixed bed reactor. KH2PO4/AA gave the best performance among the eight tested catalysts. The catalyst was prepared by loading KH2PO4 on AA and then calcining at the optimized temperature of 700 °C for 8 h. In the vapor phase reaction, the level of anisole yield(LAY) has a maximum at 400–450 °C when the temperature varied from 300 to 500°C, which decreased slightly with increasing WHSV and increased distinctly with increasing mole fraction of methanol. On comparing O‐methylation and C‐methylation of phenol, a low temperature,high WHSV(short residence time), and a low methanol concentration over the KH2PO4/AA catalyst with higher K contents were found to increase anisole selectivity by O‐methylation of phenol. The reaction routes to the major products and the catalytic mechanism were suggested, and a ‘K‐acid'bifunctional process may be a critical factor to the formation of anisole.
文摘Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction (HDO) of anisole as model reaction. Ni/α-Al2O3 was found to be the highest active catalyst for HDO of anisole. Under the optimal conditions, the anisole conversion is 93.25% and the hydrocarbon yield is 90.47%. Catalyst characteriza-tion using H2-TPD method demonstrates that Ni/α-Al2O3 catalyst possesses more amount of active metal Ni than those of other investigated catalysts, which can enhance the cat-alytic activity for hydrogenation. Furthermore, it is found that the Ni/α-Al2O3 catalyst has excellent repeatability, and the carbon deposited on the surface of catalyst is negligible.
文摘The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of-the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons originating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700℃ and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.
文摘Methoxyacetophenone(4 MAP) was synthesized by the acylation of anisole with acetic anhydride in the presence of HY zeolite. The addition of an appropriate amount of some solvent such as dichloromethane, chloroform, carbon disulfide or chlorobenzene to the reaction system can improve the yield of the acylated product to a certain extent. HY zeolite used can be recovered, and reused after being regenerated, obtaining almost the same yield of 4 MAP as the fresh zeolite.
文摘A series of aromatic ketones 4-acyl anisole were synthesized with high yield by using carboxylic acids as acylating agents and a HY zeolite as catalyst.
基金supported by the National Natural Science Foundation of China(21576193,21176177)~~
文摘SiO2‐supported monometallic Ni and bimetallic Ni‐In catalysts were prepared and used for hydrodeoxygenation of anisole,which was used as a model bio‐oil compound,for BTX(benzene,toluene,and xylene)production.The effects of the Ni/In ratio and Ni content on the structures and performances of the catalysts were investigated.The results show that In atoms were incorporated into the Ni metal lattice.Although the Ni‐In bimetallic crystallites were similar in size to those of monometallic Ni at the same Ni content,H2uptake by the bimetallic Ni‐In catalyst was much lower than that by monometallic Ni because of dilution of Ni atoms by In atoms.Charge transfer from In to Ni was observed for the bimetallic Ni‐In catalysts.All the results indicate intimate contact between Ni and In atoms,and the In atoms geometrically and electronically modified the Ni atoms.In the hydrodeoxygenation of anisole,although the activities of the Ni‐In bimetallic catalysts in the conversion of anisole were lower than that of the monometallic Ni catalyst,they gave higher selectivities for BTX and cyclohexane as a result of suppression of benzene ring hydrogenation and C–C bond hydrogenolysis.They also showed lower methanation activity.These results will be useful for enhancing carbon yields and reducing H2consumption.In addition,the lower the Ni/In ratio was,the greater was the effect of In on the catalytic performance.The selectivity for BTX was primarily determined by the Ni/In ratio and was little affected by the Ni content.We suggest that the performance of the Ni‐In bimetallic catalyst can be ascribed to the geometric and electronic effects of In.
基金supported by the U.S.Department of Energy,DOE/EPSCOR(Grant DESC0004600)
文摘The cleavage of the alkoxy(Ar-O-R) ether bond present in anisole is an interesting hydrodeoxygenation(HDO) reaction, since this asymmetric group contains two different C–O bonds, Caryl–O or Calkyl–O, which could potentially cleave. Recent work on the HDO of anisole over Pt, Ru, and Fe catalysts has shown that a common phenoxy surface intermediate is formed on all three metals. The subsequent reaction path of this intermediate varies from metal to metal, depending on the metal oxophilicity. Over the less oxophilic Pt, phenol is the only primary product. By contrast, on the more oxophilic Fe catalyst, the sole primary product is benzene instead of phenol. On Ru, with intermediate oxophilicity, both benzene and phenol are primary products. In this contribution, we have investigated Rh catalysts of varying surface nanostructures. A combination of experimental measurements and computational calculations was used to explore the effects of varying metal coordination number, an additional parameter that can be used to control the oxophilicity of a metal. The results confirm that metal oxophilicity is a good descriptor for HDO performance of metal catalysts and it can be controlled via selection of metal type and/or metal extent of coordination. Small Rh metal clusters with low coordination metal sites are more active for the deoxygenation pathway but also quickly deactivated while large clusters with high coordination sites are more active toward hydrogenation and more stable.
基金Major Science and Technology Project of Yunnan Province(202102AE090042)National Natural Science Foundation of China(21766016)+1 种基金the Science and Technology Talent and Platform Program of Yunnan Provincial Science and Technology Department(202005AF150037)the financial support of Taif University Researchers Supporting Project(TURSP-2020/27),Taif University,Taif,Saudi Arabia。
文摘The Ni-Nb_(2)O_(5)nanocatalysts have been prepared by the solgel method,and the catalytic hydrodeoxygenation(HDO)performance of anisole as model compound is studied.The results show that Nb exists as amorphous Nb_(2)O_(5)species,which can promote Ni dispersion.The addition of Nb_(2)O_(5)increases the acidity of the catalyst.However,when the content of niobium is high,there is an inactive Nb-Ni-O mixed phase.The size and morphology of Ni grains in catalysts are different due to the difference of Nb/Ni molar ratio.The Ni_(0.9)Nb_(0.1)sample has the largest surface area of 170.8 m^(2)·g^(-1)among the catalysts prepared in different Nb/Ni molar ratios,which is mainly composed of spherical nanoparticles and crack pores.The HDO of anisole follows the reaction route of the hydrogenation HYD route.The Ni_(0.9)Nb_(0.1)catalyst displayed a higher HDO performance for anisole than Ni catalyst.The selectivity to cyclohexane over the Ni_(0.9)Nb_(0.1)sample is about 10 times that of Ni catalyst at 220℃and 3 MPa H_(2).The selectivity of cyclohexane is increased with the increase of reaction temperature.The anisole is almost completely transformed into cyclohexane at 240℃,3 MPa H_(2)and 4 h.
基金supported by the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)the Fundamental Research Funds for the Central Universities(226-2022-00226).
文摘The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.
文摘Reman spectroscopy is used as a tool to monitor the reaction between N,N'-di(pmethyl)monothioxamides and 1,3-diamine trimethylene and to detect the reaction intermediate. By observing changes of 1024 cm^(-1) C=S band and appearance of a new bend at around 1720 cm^(-1), the reaction mechanism is discussed.
基金Foundation-Flanders(FWO)(1SA7522N)for financial support through Grant Number 12Z2218N.
文摘The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported catalysts increases with the Ni content in the NiCu phase,related to Ni’s hydrogenation capacity.In contrast,on aγ-Al_(2)O_(3) support,the activity decreases with the Ni content.Overall,Al_(2)O_(3)-supported catalysts,exhibiting a smaller NiCu alloy particle size,are more active than SiO_(2)-supported ones.In terms of selectivity,SiO_(2)-supported catalysts mainly hydrogenate anisole to methoxycyclohexane,while,particularly at higher conversions,γ-Al_(2)O_(3)-supported catalysts are able to further convert methoxycyclohexane to cyclohexane,demonstrating the importance of acid sites for low-temperature HDO.The Ni/Cu ratio also steers the selectivity,but not the catalyst stability.Deactivation phenomena are only support dependent:while on SiO_(2)-supported catalysts,active site sintering occurs,attributed to weak stabilization of metal particles by the support,acid catalyzed coking is the main cause of deactivation on theγ-Al_(2)O_(3)-supported catalysts.