We develop quantum mechanical Dirac ket-bra operator’s integration theory in Q-ordering or P-ordering to multimode case,where Q-ordering means all Qs are to the left of all Ps and P-ordering means all Ps are to the l...We develop quantum mechanical Dirac ket-bra operator’s integration theory in Q-ordering or P-ordering to multimode case,where Q-ordering means all Qs are to the left of all Ps and P-ordering means all Ps are to the left of all Qs.As their applications,we derive Q-ordered and P-ordered expansion formulas of multimode exponential operator e iPlΛlkQk.Application of the new formula in finding new general squeezing operators is demonstrated.The general exponential operator for coordinate representation transformation q1q2→A B C D q1q2is also derived.In this way,much more correpondence relations between classical coordinate transformations and their quantum mechanical images can be revealed.展开更多
Evaluation for the performance of learning algorithm has been the main thread of theoretical research of machine learning. The performance of the regularized regression algorithm based on independent and identically d...Evaluation for the performance of learning algorithm has been the main thread of theoretical research of machine learning. The performance of the regularized regression algorithm based on independent and identically distributed(i.i.d.) samples has been researched by a large number of references. In the present paper we provide the convergence rates for the performance of regularized regression based on the inputs of p-order Markov chains.展开更多
In this paper, we are presenting a new vector order, a solution to the open problem of the generalization of mathematical morphology to multicomponent images and multidimensional data. This approach uses the paradigm ...In this paper, we are presenting a new vector order, a solution to the open problem of the generalization of mathematical morphology to multicomponent images and multidimensional data. This approach uses the paradigm of P–order. Its primary principle consists, first in partitioning the multi-component image in the attribute space by a classification method in different numbers of classes, and then the vector attributes are ordered within each class (intra-order-class). And finally the classes themselves are ordered in turn from their barycenter (inter-class order). Thus, two attribute vectors (or colors) whatever, belonging to the vector image can be compared. Provided with this relation of order, vectors attributes of a multivariate image define a complete lattice ingredient necessary for the definition of the various morphological operators. In fact, this method creates a strong close similarity between vectors in order to move towards an order of the same principle as defined in the set of real numbers. The more the number of classes increases, the more the colors of the same class are similar and therefore the absolute adaptive referent tends to be optimal. On the other hand, the more the class number decreases or equals two, the more our approach tends towards the hybrid order developed previously. The proposed order has been implemented on different morphological operators through different multicomponent images. The fundamental robustness of our approach and that relating to noise have been tested. The results on the gradient, Laplacian and Median filter operators show the performance of our new order.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11175113)
文摘We develop quantum mechanical Dirac ket-bra operator’s integration theory in Q-ordering or P-ordering to multimode case,where Q-ordering means all Qs are to the left of all Ps and P-ordering means all Ps are to the left of all Qs.As their applications,we derive Q-ordered and P-ordered expansion formulas of multimode exponential operator e iPlΛlkQk.Application of the new formula in finding new general squeezing operators is demonstrated.The general exponential operator for coordinate representation transformation q1q2→A B C D q1q2is also derived.In this way,much more correpondence relations between classical coordinate transformations and their quantum mechanical images can be revealed.
基金Supported by the National Natural Science Foundation of China (10871226)the Natural Science Foundation of Zhejiang Province (Y6100096)
文摘Evaluation for the performance of learning algorithm has been the main thread of theoretical research of machine learning. The performance of the regularized regression algorithm based on independent and identically distributed(i.i.d.) samples has been researched by a large number of references. In the present paper we provide the convergence rates for the performance of regularized regression based on the inputs of p-order Markov chains.
文摘In this paper, we are presenting a new vector order, a solution to the open problem of the generalization of mathematical morphology to multicomponent images and multidimensional data. This approach uses the paradigm of P–order. Its primary principle consists, first in partitioning the multi-component image in the attribute space by a classification method in different numbers of classes, and then the vector attributes are ordered within each class (intra-order-class). And finally the classes themselves are ordered in turn from their barycenter (inter-class order). Thus, two attribute vectors (or colors) whatever, belonging to the vector image can be compared. Provided with this relation of order, vectors attributes of a multivariate image define a complete lattice ingredient necessary for the definition of the various morphological operators. In fact, this method creates a strong close similarity between vectors in order to move towards an order of the same principle as defined in the set of real numbers. The more the number of classes increases, the more the colors of the same class are similar and therefore the absolute adaptive referent tends to be optimal. On the other hand, the more the class number decreases or equals two, the more our approach tends towards the hybrid order developed previously. The proposed order has been implemented on different morphological operators through different multicomponent images. The fundamental robustness of our approach and that relating to noise have been tested. The results on the gradient, Laplacian and Median filter operators show the performance of our new order.