In this paper, we propose astochastic Petri net model P-timed Workflow (WPTSPN) to specify, verify, and analyze a business process (BP) of a Flexible Manufacturing System (FMS). After formalizing the semantics of our ...In this paper, we propose astochastic Petri net model P-timed Workflow (WPTSPN) to specify, verify, and analyze a business process (BP) of a Flexible Manufacturing System (FMS). After formalizing the semantics of our model, we illustrate how to verifysome of its properties (reachability, safety, boundedness, liveness, correctness, alive tokens, and security) in the P-Timed context. Next, we validate the relevance of the proposed model with MATLAB simulation through a specific FMS case study. Finally, we use a generalized truncated density function to predict the duration of a token’s sojourn (residence) in a timed place with respect to the sequence states of the global FMS workflow.展开更多
文摘In this paper, we propose astochastic Petri net model P-timed Workflow (WPTSPN) to specify, verify, and analyze a business process (BP) of a Flexible Manufacturing System (FMS). After formalizing the semantics of our model, we illustrate how to verifysome of its properties (reachability, safety, boundedness, liveness, correctness, alive tokens, and security) in the P-Timed context. Next, we validate the relevance of the proposed model with MATLAB simulation through a specific FMS case study. Finally, we use a generalized truncated density function to predict the duration of a token’s sojourn (residence) in a timed place with respect to the sequence states of the global FMS workflow.