Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current...Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current arrival picking methods.Thus,a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network(CRNN).This method fully utilizes the advantages of convolutional layers and gated recurrent units(GRU)in extracting short-and long-term features,in order to create a precise and lightweight arrival picking structure.Then,the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model.The actual operation on various devices indicates that compared with the U-Net method,the CRNN method achieves faster arrival picking with less performance consumption.An application of large underground caverns in the Yebatan hydropower station(YBT)project shows that compared with the short-term average/long-term average(STA/LTA),Akaike information criterion(AIC)and U-Net methods,the CRNN method has the highest accuracy within four sampling points,which is 87.44%for P-wave and 91.29%for S-wave,respectively.The sum of mean absolute errors(MAESUM)of the CRNN method is 4.22 sampling points,which is lower than that of the other methods.Among the four methods,the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure,which occurs at the junction of the shaft and the second gallery.Thus,the proposed method can pick up P-and S-arrival accurately and rapidly,providing a reference for rock failure analysis and evaluation in engineering applications.展开更多
Fast and accurate P-wave arrival picking significantly affects the performance of earthquake early warning(EEW)systems.Automated P-wave picking algorithms used in EEW have encountered problems of falsely picking up no...Fast and accurate P-wave arrival picking significantly affects the performance of earthquake early warning(EEW)systems.Automated P-wave picking algorithms used in EEW have encountered problems of falsely picking up noise,missing P-waves and inaccurate P-wave arrival estimation.To address these issues,an automatic algorithm based on the convolution neural network(DPick)was developed,and trained with a moderate number of data sets of 17,717 accelerograms.Compared to the widely used approach of the short-term average/long-term average of signal characteristic function(STA/LTA),DPick is 1.6 times less likely to detect noise as a P-wave,and 76 times less likely to miss P-waves.In terms of estimating P-wave arrival time,when the detection task is completed within 1 s,DPick′s detection occurrence is 7.4 times that of STA/LTA in the 0.05 s error band,and 1.6 times when the error band is 0.10 s.This verified that the proposed method has the potential for wide applications in EEW.展开更多
The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) b...The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) by using relative kinematic positioning and derived dynamic ground motions caused by this large earthquake. The dynamic displacements time series clearly indicated the displacement amplitude of each station was related to the rupture directivity. The stations which located in the di- rection of rupture propagation had larger displacement amplitudes than others. Also dynamic ground displacement exceeding 5 cm was detected by the GPS station that was 2000 km away from the epicenter. Permanent coseismic displacements were resolved from the near-field high-rate GPS stations with wavelet decomposition-reconstruction method and P-wave arrivals were also detected with S transform method. The results of this study can be used for earthquake rupture process and Earthquake Early Warning studies.展开更多
基金We acknowledge the funding support from National Natural Science Foundation of China(Grant No.42077263).
文摘Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current arrival picking methods.Thus,a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network(CRNN).This method fully utilizes the advantages of convolutional layers and gated recurrent units(GRU)in extracting short-and long-term features,in order to create a precise and lightweight arrival picking structure.Then,the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model.The actual operation on various devices indicates that compared with the U-Net method,the CRNN method achieves faster arrival picking with less performance consumption.An application of large underground caverns in the Yebatan hydropower station(YBT)project shows that compared with the short-term average/long-term average(STA/LTA),Akaike information criterion(AIC)and U-Net methods,the CRNN method has the highest accuracy within four sampling points,which is 87.44%for P-wave and 91.29%for S-wave,respectively.The sum of mean absolute errors(MAESUM)of the CRNN method is 4.22 sampling points,which is lower than that of the other methods.Among the four methods,the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure,which occurs at the junction of the shaft and the second gallery.Thus,the proposed method can pick up P-and S-arrival accurately and rapidly,providing a reference for rock failure analysis and evaluation in engineering applications.
基金National Natural Science Foundation of China under Grant Nos.51968016 and 5197083806the Guangxi Innovation Driven Development Project(Science and Technology Major Project,Grant No.Guike AA18118008).
文摘Fast and accurate P-wave arrival picking significantly affects the performance of earthquake early warning(EEW)systems.Automated P-wave picking algorithms used in EEW have encountered problems of falsely picking up noise,missing P-waves and inaccurate P-wave arrival estimation.To address these issues,an automatic algorithm based on the convolution neural network(DPick)was developed,and trained with a moderate number of data sets of 17,717 accelerograms.Compared to the widely used approach of the short-term average/long-term average of signal characteristic function(STA/LTA),DPick is 1.6 times less likely to detect noise as a P-wave,and 76 times less likely to miss P-waves.In terms of estimating P-wave arrival time,when the detection task is completed within 1 s,DPick′s detection occurrence is 7.4 times that of STA/LTA in the 0.05 s error band,and 1.6 times when the error band is 0.10 s.This verified that the proposed method has the potential for wide applications in EEW.
基金supported by Director Foundation of Institute of Seismology,China Earthquake Administration(IS201426142)National Natural Science Foundation of China(41541029,41574017, 41274027)+1 种基金Natural Science Foundation of HuBei Province (2015CFB642)provided by Crustal Movement Observation Network of China(CMONOC) and UNAVCO
文摘The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) by using relative kinematic positioning and derived dynamic ground motions caused by this large earthquake. The dynamic displacements time series clearly indicated the displacement amplitude of each station was related to the rupture directivity. The stations which located in the di- rection of rupture propagation had larger displacement amplitudes than others. Also dynamic ground displacement exceeding 5 cm was detected by the GPS station that was 2000 km away from the epicenter. Permanent coseismic displacements were resolved from the near-field high-rate GPS stations with wavelet decomposition-reconstruction method and P-wave arrivals were also detected with S transform method. The results of this study can be used for earthquake rupture process and Earthquake Early Warning studies.