Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeut...Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.展开更多
AIM: To clarify human papillomavirus (HPV) involvement in carcinogenesis of the upper digestive tract of virological and pathological analyses. METHODS: The present study examined the presence of HPV in squamous cell ...AIM: To clarify human papillomavirus (HPV) involvement in carcinogenesis of the upper digestive tract of virological and pathological analyses. METHODS: The present study examined the presence of HPV in squamous cell carcinomas of the oral cavity (n = 71), and esophagus (n = 166) collected from Japan, Pakistan and Colombia, with different HPV exposure risk and genetic backgrounds. The viral load and physical status of HPV16 and HPV16-E6 variants were examined. Comparison of p53 and p16INK4a expression in HPV-positive and HPV-negative cases was also made. RESULTS: HPV16 was found in 39 (55%) oral carcinomas (OCs) and 24 (14%) esophageal carcinomas (ECs). This site-specific difference in HPV detection between OCs and ECs was statistically significant (P < 0.001). There was a significant difference in the geographical distribution of HPV16-E6 variants. Multiple infections of different HPV types were found in 13 ECs, but multiple infections were not found in OCs. This difference was statistically significant (P = 0.001). The geometric means (95% confidence interval) of HPV16 viral load in OCs and ECs were 0.06 (0.02-0.18) and 0.12 (0.05-0.27) copies per cell, respectively. The expression of p16INK4a proteins was increased by the presence of HPV in ECs (53% and 33% in HPV-positive and-negative ECs, respectively; P = 0.036), and the high-risk type of the HPV genome was not detected in surrounding normal esophageal mucosa of HPV-positive ECs. CONCLUSION: Based on our results, we cannot deny the possibility of HPV16 involvement in the carcinogenesis of the esophagus.展开更多
文摘Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.
基金Suppreted by Grants-in-Aid for Scientific Research on Priority Areas (17015037) of the Ministry of Education, Culture, Sports,Science and Technology, Japan
文摘AIM: To clarify human papillomavirus (HPV) involvement in carcinogenesis of the upper digestive tract of virological and pathological analyses. METHODS: The present study examined the presence of HPV in squamous cell carcinomas of the oral cavity (n = 71), and esophagus (n = 166) collected from Japan, Pakistan and Colombia, with different HPV exposure risk and genetic backgrounds. The viral load and physical status of HPV16 and HPV16-E6 variants were examined. Comparison of p53 and p16INK4a expression in HPV-positive and HPV-negative cases was also made. RESULTS: HPV16 was found in 39 (55%) oral carcinomas (OCs) and 24 (14%) esophageal carcinomas (ECs). This site-specific difference in HPV detection between OCs and ECs was statistically significant (P < 0.001). There was a significant difference in the geographical distribution of HPV16-E6 variants. Multiple infections of different HPV types were found in 13 ECs, but multiple infections were not found in OCs. This difference was statistically significant (P = 0.001). The geometric means (95% confidence interval) of HPV16 viral load in OCs and ECs were 0.06 (0.02-0.18) and 0.12 (0.05-0.27) copies per cell, respectively. The expression of p16INK4a proteins was increased by the presence of HPV in ECs (53% and 33% in HPV-positive and-negative ECs, respectively; P = 0.036), and the high-risk type of the HPV genome was not detected in surrounding normal esophageal mucosa of HPV-positive ECs. CONCLUSION: Based on our results, we cannot deny the possibility of HPV16 involvement in the carcinogenesis of the esophagus.