Populus euphratica Oliv. is widely distributed along the Tarim River. Maintaining stability of P. euphratica population is important to local development. This study explored the static life table, survivorship curves...Populus euphratica Oliv. is widely distributed along the Tarim River. Maintaining stability of P. euphratica population is important to local development. This study explored the static life table, survivorship curves and four function curves (survival rate, cumulative mortality rate, mortality density, and hazard rate), and development index of P. euphratica population in the middle reaches of Tarim River. The results indicated that the age structure of P. euphratica population belonged to positive pyramidal type, which meant young age-class individuals occupied most populations. The number ofⅠ-Ⅱage classes accounted for 66.2% of whole population, and this indicated that there were abundant subsequent seedlings resources to support the growth of P. euphratica population in the middle reaches of Tarim River. The survivorship curve of P. euphratica belonged to the Deevey Ⅲ (concave-type) and the development index was 47.72%. Four function curves revealed that the individuals of P. euphratica sharply decreased at the initial stage and then leveled off at the late stage of survival curve. Time sequence prediction models predicted that the number of midlife individuals would increase in future 10, 20, 30 years, and P. euphratica population grew steadily as a result of rich saplings.展开更多
[Objective] This study aimed to investigate the leaf anatomical structures of P. tunicoides populations under water-limited conditions. [Method] 2-year-old seedlings of herbaceous perennial P. tunicoides that was intr...[Objective] This study aimed to investigate the leaf anatomical structures of P. tunicoides populations under water-limited conditions. [Method] 2-year-old seedlings of herbaceous perennial P. tunicoides that was introduced into the experi- mental field were selected as the research objects. Under the well-watered and wa- ter-limited conditions, we conducted the comparative observation of leaf anatomical structure and stomatal characteristics of two populations by using paraffin slice method and imprinting method. [Result] The result showed that the upper cuticle of P. tunicoides leaves were thickened, the palisade tissue/spongy tissue ratio, vascular bundle diameter and number of xylem vessels in main vein had increased, the stomatal opening became smaller and the stomatal density had increased in winter- spring drought period under water-limited conditions. The plasticity of above traits could be regarded as the important indicators for detecting the responses of P. tunicoides populations to water-limited conditions. Meanwhile, variation amplitudes of these indicators were different among populations. Leaf anatomical structure and stomatal characteristics in Lijiang Axi population under water-limited conditions varied significantly, which might cause the stronger adaptability of this population to drought conditions. [Conclusion] This research provided a reference for the selection of drought-resistant P. tunicoides germplasm and exploration of the adaptive differentia- tion of P. tunicoides populations under natural drought conditions.展开更多
Populus euphratica Oliv.is an old desert tree species that has been naturalized and invades zones along the watercourses in many arid and semiarid regions.The plant species developed some plasticity to adapt to the gr...Populus euphratica Oliv.is an old desert tree species that has been naturalized and invades zones along the watercourses in many arid and semiarid regions.The plant species developed some plasticity to adapt to the gradual environmental gradients.The aim of this study was to test the hypothesis that the changes in leaf morphology of P.euphratica reflect the adaptability of the plant to the unique environment of the lower reaches of Tarim River in China.The foliar architecture,blade epidermal and internal anatomies of P.euphratica were analyzed at different sites along the Tarim River.Compared with the abaxial surface of the leaves,their adaxial surface has more hairs,a greater stomatal density and opening,higher mesophyll proportion,and increased blade thickness,palisade width,and epidermal thickness.The long trichome of the roots found at site 6 in the Yinsu section may be an adapted structure of the plants in arid areas.The mature leaves of P.euphratica have comparatively more epidermis and cuticles,well developed palisades and more chloroplasts at different sites compared to the young leaves.Foliar morphological and anatomical variability in P.euphratica may be considered an adaptive advantage that enables leaves to develop and function in different habitats,marked by strong variations in solar radiation,air temperature,humidity and water table.展开更多
Na+/H+ antiporters play an important role in the salt tolerance of a wide variety of plants.Using the rapid amplification of cDNA ends method,a Na+/H+ antiporter gene (PeNHX1) was isolated from Populus euphratica.The ...Na+/H+ antiporters play an important role in the salt tolerance of a wide variety of plants.Using the rapid amplification of cDNA ends method,a Na+/H+ antiporter gene (PeNHX1) was isolated from Populus euphratica.The deduced amino acid sequence contained 528 amino acid residues with a conserved amiloride-binding domain (77LFFIYLLPPI86) and shared more than 68% identity with that of AtNHX1 from Arabidopsis thaliana.PeNHX1 can confer resistance to Na+,as well as Li+,to (EP432) an Escherichia coli strain deficient in both nhaA and nhaB,thus proving that it is a functional Na+/H+ antiporter.PeNHX1 expression profile in EP432 reflected pH independent manner.PeNHX1 expression was regulated by salt at the transcriptional level.Meanwhile,results demonstrated that transcripts of PeNHX1 in P.euphratica calli showed a salt dependent response,and thus provide a valuable tool for studying signaling and biochemical pathways involved in salt recognition and response in P.euphratica.展开更多
Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphr...Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphratica grew more rapidly and accumulated less Na+, but more K+, under salt stress than those of salt-sensitive poplar, Populus hopeiensis. Different types of Na+/H+ antiporters (SOS1, NhaD1 and NHX1) were isolated from P. euphratica; all of these genes have been shown to play important roles in plant salt tolerance mechanism in previous studies. Expression profiles of these three genes were compared between P. hopeiensis and P. euphratica in the presence and absence of salt stress by real-time PCR. The three genes were induced in both P. euphratica and P. hopeiensis by salt. Transcript levels of PeNHX1 were lower in P. euphratica than in P. hopeiensis under 150 mM NaCl stress. In addition, transcript levels of PeNhaD1 were lower, while PeSOS1 were higher in P. euphratica than in P. hopeiensis under both stressed and unstressed conditions. The results indicated that P. euphratica up-regulates different genes and consistently maintains both effluxes of Na+ and high K+ levels. Our data suggests that differences in gene expression patterns may contribute to the dif-ference in salt tolerance between these two poplars.展开更多
Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level wit...Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level with Na+ and K+ contents, the expression level of vacuolar Na+/H+ antiporters was investigated for NaCl-induced changes in P. euphratica and t3. pru- inosa calli. Compared to R euphratica, P. pruinosa calli grew well in 200 mM NaC1 stress from 14. to 21 days. Increasing the stressed time caused an increase in Na+ content concomitant with a decrease in K+ content in P. euphratica calli, whereas, with the presence of 200 mM NaCI, K+ content has a less increase in 14 and 21 days than in 7 days which was detected in R pruinosa calli. The transcript levels of six genes coding for NHX-type Na+/H+ antiporters suggest that vacuolar NHX1-NHX6 antiporters play important roles in responding to salt stress in R pruinosa. Our data suggest that there exists a higher salt tolerance for P. pruinosa than P. euphratica at the cellular level, Na+ avoidance or accumulation is observed in cellular compartments, and that expression of NHX antiporters is linked to the accumulator phenotype.展开更多
[Objectives]This study was conducted to investigate the photosynthetic physiological characteristics of Populus euphratica trees at different forest ages in the desert area of Minqin in response to drought stress.[Met...[Objectives]This study was conducted to investigate the photosynthetic physiological characteristics of Populus euphratica trees at different forest ages in the desert area of Minqin in response to drought stress.[Methods]With P.euphratica trees of different ages in Minqin as the research object,the water characteristics and photosynthetic physiological indexes(chlorophyll,soluble sugar,POD,SOD and MDA)were compared under different conditions.[Results]On the time gradient,the soil water contents of P.euphratica of different ages decreased continuously with the extension of irrigation stop time,but the decreases were small.Under the same stress treatment,the soil water contents of P.euphratica of different ages increased with the deepening of soil layer,but the differences were not significant(P>0.05).Under normal condition,the chlorophyll contents of P.euphratica at three ages gradually increased with the increase of age.The chlorophyll contents in leaves of P.euphratica at different ages were all lower under normal condition and higher under water stress.The changes of POD and SOD activity in leaves of P.euphratica at different ages under different conditions were basically the same,showing that the enzyme activity was higher under water stress than under normal under.The MDA contents in leaves of the young and middle P.euphratica forests were higher under water stress at 7 and 21 d than under normal condition,and the differences were not significant(P>0.05);and the MDA content in leaves of the mature P.euphratica forest was higher under water stress at 21 and 35 d than under normal condition.Drought stress has a certain effect on the photosynthetic physiological characteristics of P.euphratica.In summary,under drought stress,the chlorophyll content,SOD and POD activity,and MDA molar concentration in the leaves of P.euphratica were basically higher than under normal condition,indicating that P.euphratica could resist drought environment through osmotic adjustment and showed strong drought resistance.[Conclusions]This study provides a theoretical reference for the restoration,protection and reconstruction of natural P.euphratica forests in the desert area of Minqin.展开更多
基金the National Science and Technology Support Program Projects (2009BAC54B04) for financing this research
文摘Populus euphratica Oliv. is widely distributed along the Tarim River. Maintaining stability of P. euphratica population is important to local development. This study explored the static life table, survivorship curves and four function curves (survival rate, cumulative mortality rate, mortality density, and hazard rate), and development index of P. euphratica population in the middle reaches of Tarim River. The results indicated that the age structure of P. euphratica population belonged to positive pyramidal type, which meant young age-class individuals occupied most populations. The number ofⅠ-Ⅱage classes accounted for 66.2% of whole population, and this indicated that there were abundant subsequent seedlings resources to support the growth of P. euphratica population in the middle reaches of Tarim River. The survivorship curve of P. euphratica belonged to the Deevey Ⅲ (concave-type) and the development index was 47.72%. Four function curves revealed that the individuals of P. euphratica sharply decreased at the initial stage and then leveled off at the late stage of survival curve. Time sequence prediction models predicted that the number of midlife individuals would increase in future 10, 20, 30 years, and P. euphratica population grew steadily as a result of rich saplings.
基金Supported by National Natural Science Foundation of China(30370156)Yunnan Provincial Key Discipline of Ornamental Plants and Horticulture of Southwest Forestry University,Key Laboratories and School Laboratories Sharing Platform of Provincial Colleges~~
文摘[Objective] This study aimed to investigate the leaf anatomical structures of P. tunicoides populations under water-limited conditions. [Method] 2-year-old seedlings of herbaceous perennial P. tunicoides that was introduced into the experi- mental field were selected as the research objects. Under the well-watered and wa- ter-limited conditions, we conducted the comparative observation of leaf anatomical structure and stomatal characteristics of two populations by using paraffin slice method and imprinting method. [Result] The result showed that the upper cuticle of P. tunicoides leaves were thickened, the palisade tissue/spongy tissue ratio, vascular bundle diameter and number of xylem vessels in main vein had increased, the stomatal opening became smaller and the stomatal density had increased in winter- spring drought period under water-limited conditions. The plasticity of above traits could be regarded as the important indicators for detecting the responses of P. tunicoides populations to water-limited conditions. Meanwhile, variation amplitudes of these indicators were different among populations. Leaf anatomical structure and stomatal characteristics in Lijiang Axi population under water-limited conditions varied significantly, which might cause the stronger adaptability of this population to drought conditions. [Conclusion] This research provided a reference for the selection of drought-resistant P. tunicoides germplasm and exploration of the adaptive differentia- tion of P. tunicoides populations under natural drought conditions.
基金funded by the National Natural Science Foundation of China (31060062 and 11014010)the Shihezi University Program (Q9yy200814)
文摘Populus euphratica Oliv.is an old desert tree species that has been naturalized and invades zones along the watercourses in many arid and semiarid regions.The plant species developed some plasticity to adapt to the gradual environmental gradients.The aim of this study was to test the hypothesis that the changes in leaf morphology of P.euphratica reflect the adaptability of the plant to the unique environment of the lower reaches of Tarim River in China.The foliar architecture,blade epidermal and internal anatomies of P.euphratica were analyzed at different sites along the Tarim River.Compared with the abaxial surface of the leaves,their adaxial surface has more hairs,a greater stomatal density and opening,higher mesophyll proportion,and increased blade thickness,palisade width,and epidermal thickness.The long trichome of the roots found at site 6 in the Yinsu section may be an adapted structure of the plants in arid areas.The mature leaves of P.euphratica have comparatively more epidermis and cuticles,well developed palisades and more chloroplasts at different sites compared to the young leaves.Foliar morphological and anatomical variability in P.euphratica may be considered an adaptive advantage that enables leaves to develop and function in different habitats,marked by strong variations in solar radiation,air temperature,humidity and water table.
基金Financial support for this research was provided by NSFC (30800865)China Postdoctoral Science Foundation (200704207)
文摘Na+/H+ antiporters play an important role in the salt tolerance of a wide variety of plants.Using the rapid amplification of cDNA ends method,a Na+/H+ antiporter gene (PeNHX1) was isolated from Populus euphratica.The deduced amino acid sequence contained 528 amino acid residues with a conserved amiloride-binding domain (77LFFIYLLPPI86) and shared more than 68% identity with that of AtNHX1 from Arabidopsis thaliana.PeNHX1 can confer resistance to Na+,as well as Li+,to (EP432) an Escherichia coli strain deficient in both nhaA and nhaB,thus proving that it is a functional Na+/H+ antiporter.PeNHX1 expression profile in EP432 reflected pH independent manner.PeNHX1 expression was regulated by salt at the transcriptional level.Meanwhile,results demonstrated that transcripts of PeNHX1 in P.euphratica calli showed a salt dependent response,and thus provide a valuable tool for studying signaling and biochemical pathways involved in salt recognition and response in P.euphratica.
基金NSFC (30800865, 40801001)the Education Ministry of China (NCET-05-0886)China Postdoctoral Science Foundation (20070420758)
文摘Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphratica grew more rapidly and accumulated less Na+, but more K+, under salt stress than those of salt-sensitive poplar, Populus hopeiensis. Different types of Na+/H+ antiporters (SOS1, NhaD1 and NHX1) were isolated from P. euphratica; all of these genes have been shown to play important roles in plant salt tolerance mechanism in previous studies. Expression profiles of these three genes were compared between P. hopeiensis and P. euphratica in the presence and absence of salt stress by real-time PCR. The three genes were induced in both P. euphratica and P. hopeiensis by salt. Transcript levels of PeNHX1 were lower in P. euphratica than in P. hopeiensis under 150 mM NaCl stress. In addition, transcript levels of PeNhaD1 were lower, while PeSOS1 were higher in P. euphratica than in P. hopeiensis under both stressed and unstressed conditions. The results indicated that P. euphratica up-regulates different genes and consistently maintains both effluxes of Na+ and high K+ levels. Our data suggests that differences in gene expression patterns may contribute to the dif-ference in salt tolerance between these two poplars.
基金Financial support for this research was provided by the Program for New Century Excellent Talents in the Ministry of Education in China(NCET-09-0446),NSFC(31370396,30800865) and lzujbky-2012-k22 to YuXia Wu
文摘Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level with Na+ and K+ contents, the expression level of vacuolar Na+/H+ antiporters was investigated for NaCl-induced changes in P. euphratica and t3. pru- inosa calli. Compared to R euphratica, P. pruinosa calli grew well in 200 mM NaC1 stress from 14. to 21 days. Increasing the stressed time caused an increase in Na+ content concomitant with a decrease in K+ content in P. euphratica calli, whereas, with the presence of 200 mM NaCI, K+ content has a less increase in 14 and 21 days than in 7 days which was detected in R pruinosa calli. The transcript levels of six genes coding for NHX-type Na+/H+ antiporters suggest that vacuolar NHX1-NHX6 antiporters play important roles in responding to salt stress in R pruinosa. Our data suggest that there exists a higher salt tolerance for P. pruinosa than P. euphratica at the cellular level, Na+ avoidance or accumulation is observed in cellular compartments, and that expression of NHX antiporters is linked to the accumulator phenotype.
基金Supported by Research and Development Program of Gansu Province(17YF1FA113)The National Natural Science Foundation of China(31560128).
文摘[Objectives]This study was conducted to investigate the photosynthetic physiological characteristics of Populus euphratica trees at different forest ages in the desert area of Minqin in response to drought stress.[Methods]With P.euphratica trees of different ages in Minqin as the research object,the water characteristics and photosynthetic physiological indexes(chlorophyll,soluble sugar,POD,SOD and MDA)were compared under different conditions.[Results]On the time gradient,the soil water contents of P.euphratica of different ages decreased continuously with the extension of irrigation stop time,but the decreases were small.Under the same stress treatment,the soil water contents of P.euphratica of different ages increased with the deepening of soil layer,but the differences were not significant(P>0.05).Under normal condition,the chlorophyll contents of P.euphratica at three ages gradually increased with the increase of age.The chlorophyll contents in leaves of P.euphratica at different ages were all lower under normal condition and higher under water stress.The changes of POD and SOD activity in leaves of P.euphratica at different ages under different conditions were basically the same,showing that the enzyme activity was higher under water stress than under normal under.The MDA contents in leaves of the young and middle P.euphratica forests were higher under water stress at 7 and 21 d than under normal condition,and the differences were not significant(P>0.05);and the MDA content in leaves of the mature P.euphratica forest was higher under water stress at 21 and 35 d than under normal condition.Drought stress has a certain effect on the photosynthetic physiological characteristics of P.euphratica.In summary,under drought stress,the chlorophyll content,SOD and POD activity,and MDA molar concentration in the leaves of P.euphratica were basically higher than under normal condition,indicating that P.euphratica could resist drought environment through osmotic adjustment and showed strong drought resistance.[Conclusions]This study provides a theoretical reference for the restoration,protection and reconstruction of natural P.euphratica forests in the desert area of Minqin.