OMARIA which is used to treat malaria in Odisa province, India, was investigated in Africa. The in-vitro anti-malarial activity of OMARIA was tested on P. falciparum strains FCB (chloroquine-resistant) and 3D7 (chloro...OMARIA which is used to treat malaria in Odisa province, India, was investigated in Africa. The in-vitro anti-malarial activity of OMARIA was tested on P. falciparum strains FCB (chloroquine-resistant) and 3D7 (chloroquine-sensitive) and on fresh clinical isolates from Gabon, using the DELI method. Host cell toxicity was analysed with the MTT test. Interesting activity was observed. Inhibition concentrations (IC50) were 20.6 ± 5.2 μg/ml and 14.1 ± 4.3μg/ml respectively on FCB and 3D7 strains. On clinical isolates, the mean of IC50 was 10.65 ± 4.8μg/ml. OMARIA is highly potent against all field isolates tested by us (Gabon includes Pfmdr1 N86). Lethal dose on Vero cells being 165 ± 10.7μg/ml indicate a selective index of 13 for FCB, i.e., non-toxic. Data substantiates scientific rationale for use of OMARIA. This information and such understanding can be used in searching African phyto parables (for use in Africa with similar results as in India) and in new drug design. With Indian assistance, Punica granatum can also be cultivated in Central Africa, and OMARIA can be made, with an aim to Fight Malaria at Home.展开更多
Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a novel target in Plasmodium falciparum as it has least homology with the human host. Homology...Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a novel target in Plasmodium falciparum as it has least homology with the human host. Homology model of P. falciparum transketolase (PfTk) was constructed using the crystal structure of S. cervisiae transketolase as a template, and used for the identification and prioritization of potential compounds targeted against Plasmodium falciparum transketolase. The docking studies with fructose-6-phosphate and thiamine pyrophosphate showed that His31, Asp473, Ser388, Arg361 and His465 formed hydrogen bonds with fructose-6-phosphate while pyrimidine ring of coenzyme interacted with conserved residues of protein viz., Leu121, Glu415, Gly119. The major interacting residues involved in binding of oxythiamine pyrophosphate were similar to cofactor binding site of PfTk. An integrated pharmacophore, co-factor ThDP and substrate fructose-6-pho- sphate, based virtual screening of a small mo- lecule database retrieved eight and thirteen compounds respectively. When screened for their activity against P. falciparum transketolase, one compound in case of ThDP and three compounds in case of fructose-6-phosphate based screening were found active against PfTk. Identification of these novel and chemically diverse inhibitors provides initial leads for optimization of more potent and efficacious drug candidates to treat malarial infection.展开更多
Objective:To evaluate the antimalarial activity of noscapine against Plasmodium falciparum 3D7 strain(Pf3D7),its clinical isolate(Pf140/SS),and Plasmodium berghei ANKA(PbA).Methods:Using ring-stage survival assay,phen...Objective:To evaluate the antimalarial activity of noscapine against Plasmodium falciparum 3D7 strain(Pf3D7),its clinical isolate(Pf140/SS),and Plasmodium berghei ANKA(PbA).Methods:Using ring-stage survival assay,phenotypic assessments,and SYBR-green-based fluorescence assay,the antimalarial activities of noscapine were assessed compared with dihydroartemisinin(DHA)in in vivo and in vitro studies.In addition,hemolysis and cytotoxicity tests were carried out to evaluate its safety.RT-PCR assay was also conducted to determine the effect of noscapine on papain-like cysteine protease Plasmodium falciparum falcipain-2(PfFP-2).Results:The antimalarial efficacy of noscapine against Pf3D7 and Pf140/SS was comparable to DHA,with IC50 values of(7.68±0.88)and(5.57±0.74)nM/mL,respectively,and>95%inhibition of PbA infected rats.Noscapine also showed a safe profile,as evidenced by low hemolysis and cytotoxicity even at high concentrations.Moreover,PfFP-2 expression was significantly inhibited in both noscapine-treated Pf3D7 and Pf140/SS(P<0.01).Conclusions:Noscapine has antimalarial properties comparable to standard antimalarial DHA with better safety profiles,which may be further explored as a therapeutic candidate for the treatment of malaria.展开更多
Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search f...Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search for new and more potent drugs that target all stages of the Plasmodium falciparum life cycle from natural plant sources.This study aimed to determine the antiplasmodial effect of phytocompounds derived from A.paniculata on the stages of plasmodium falciparum.Methods:Phytocompounds from A.paniculata were identified by Gas Chromatography-Mass Spectrophotometry(GCMS)analysis.The phytocompounds were screened for their druggability using Lipinski’s rule of five and subjected to Absorption,Distribution,Metabolism,Excretion,Toxicity(ADMET)and druglikeness analysis.The phytocompounds were docked against some validated drug targets at different stages of Plasmodium falciparum(hepatic,asexual,sexual,and vector targets)using PyRx software to analyze the inhibitory potential and protein-ligand interaction.Thereafter,the stability and flexibility of the best complexes were assessed through molecular dynamics simulations at 50ns using WebGRO.Result:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl exhibited a higher binding affinity and better stability throughout the simulation period with P.falciparum dihydrofolate reductase-thymidylate synthase and Plasmodium falciparum M1 alanyl aminopeptidase for asexual blood stage and gametocyte stage of Plasmodium falciparum,respectively than the existing drugs.Meanwhile,N-Ethyl-3-methoxy-4-methylphenethylamine was also found to have a higher binding affinity and more stability throughout the simulation period with P.falciparum purine nucleoside phosphorylase and Plasmodium falciparum gametocyte surface protein for Hepatic schizonts stage of Plasmodium falciparum and gametocyte transmission blocking stage,respectively,than the existing drugs.Conclusion:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl and N-Ethyl-3-methoxy-4 methylphenethylamine from A.paniculata are predicted as an antimalarial drug candidate.Thus,it is recommended that in vitro and in vivo bioassays be conducted on these hit compounds to validate these predictions.展开更多
BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanis...BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
Background: A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum. However, the continuous spread of P. falciparum res...Background: A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum. However, the continuous spread of P. falciparum resistance to anti-malarial drugs is raising a serious problem in controlling Malaria to the vulnerable children’s immune system. In recent studies, Plasmodium falciparum Kelch 13 propeller gene (Pfk13) has been reported to develop resistance to artemisinin in South Asia. In this study, we checked Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) involved in chloroquine (CQ) resistance. Method: In this study, archived 280 samples were collected from Alupe primary school children in Busia, Western Kenya from May, 2016 to November, 2016. Genomic DNA was extracted using the MightyPrep reagent. The samples were investigated for P. falciparum positivity out of which 67 of them tested positive giving a prevalence rate of 24%. The sixty-seven were subjected to PCR amplification for the molecular marker resistance to Pfcrt. After PCR amplification, the amplicons were purified and sequenced using Sanger Sequencing. The sequence data were analyzed using BioEdit software to identify point mutations. Results: 14 samples sequences were analyzed on Bioedit software giving the following amino acid changes F76C, Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F). New mutations have been reported at position 76 leading to an amino acid change, one of Pfcrt gold standard biomarkers. However, amino acid changes Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F are newly reported giving an increase in Pfcrt prevalence of concern from zero to 5.0%. A phylogenetic evolutionary relationship was constructed as shown below. Generally, the results showed a continuous resistance of P.falciparum to Pfcrt which calls for robust continuous monitoring and surveillance. Conclusion: Due to the increase of the resistant Pfcrt gene prevalence, continuous development of new mutants against chloroquine indicates that there is need to repurpose anti-malarial drugs for future partner drugs.展开更多
文摘OMARIA which is used to treat malaria in Odisa province, India, was investigated in Africa. The in-vitro anti-malarial activity of OMARIA was tested on P. falciparum strains FCB (chloroquine-resistant) and 3D7 (chloroquine-sensitive) and on fresh clinical isolates from Gabon, using the DELI method. Host cell toxicity was analysed with the MTT test. Interesting activity was observed. Inhibition concentrations (IC50) were 20.6 ± 5.2 μg/ml and 14.1 ± 4.3μg/ml respectively on FCB and 3D7 strains. On clinical isolates, the mean of IC50 was 10.65 ± 4.8μg/ml. OMARIA is highly potent against all field isolates tested by us (Gabon includes Pfmdr1 N86). Lethal dose on Vero cells being 165 ± 10.7μg/ml indicate a selective index of 13 for FCB, i.e., non-toxic. Data substantiates scientific rationale for use of OMARIA. This information and such understanding can be used in searching African phyto parables (for use in Africa with similar results as in India) and in new drug design. With Indian assistance, Punica granatum can also be cultivated in Central Africa, and OMARIA can be made, with an aim to Fight Malaria at Home.
文摘Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a novel target in Plasmodium falciparum as it has least homology with the human host. Homology model of P. falciparum transketolase (PfTk) was constructed using the crystal structure of S. cervisiae transketolase as a template, and used for the identification and prioritization of potential compounds targeted against Plasmodium falciparum transketolase. The docking studies with fructose-6-phosphate and thiamine pyrophosphate showed that His31, Asp473, Ser388, Arg361 and His465 formed hydrogen bonds with fructose-6-phosphate while pyrimidine ring of coenzyme interacted with conserved residues of protein viz., Leu121, Glu415, Gly119. The major interacting residues involved in binding of oxythiamine pyrophosphate were similar to cofactor binding site of PfTk. An integrated pharmacophore, co-factor ThDP and substrate fructose-6-pho- sphate, based virtual screening of a small mo- lecule database retrieved eight and thirteen compounds respectively. When screened for their activity against P. falciparum transketolase, one compound in case of ThDP and three compounds in case of fructose-6-phosphate based screening were found active against PfTk. Identification of these novel and chemically diverse inhibitors provides initial leads for optimization of more potent and efficacious drug candidates to treat malarial infection.
文摘Objective:To evaluate the antimalarial activity of noscapine against Plasmodium falciparum 3D7 strain(Pf3D7),its clinical isolate(Pf140/SS),and Plasmodium berghei ANKA(PbA).Methods:Using ring-stage survival assay,phenotypic assessments,and SYBR-green-based fluorescence assay,the antimalarial activities of noscapine were assessed compared with dihydroartemisinin(DHA)in in vivo and in vitro studies.In addition,hemolysis and cytotoxicity tests were carried out to evaluate its safety.RT-PCR assay was also conducted to determine the effect of noscapine on papain-like cysteine protease Plasmodium falciparum falcipain-2(PfFP-2).Results:The antimalarial efficacy of noscapine against Pf3D7 and Pf140/SS was comparable to DHA,with IC50 values of(7.68±0.88)and(5.57±0.74)nM/mL,respectively,and>95%inhibition of PbA infected rats.Noscapine also showed a safe profile,as evidenced by low hemolysis and cytotoxicity even at high concentrations.Moreover,PfFP-2 expression was significantly inhibited in both noscapine-treated Pf3D7 and Pf140/SS(P<0.01).Conclusions:Noscapine has antimalarial properties comparable to standard antimalarial DHA with better safety profiles,which may be further explored as a therapeutic candidate for the treatment of malaria.
文摘Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search for new and more potent drugs that target all stages of the Plasmodium falciparum life cycle from natural plant sources.This study aimed to determine the antiplasmodial effect of phytocompounds derived from A.paniculata on the stages of plasmodium falciparum.Methods:Phytocompounds from A.paniculata were identified by Gas Chromatography-Mass Spectrophotometry(GCMS)analysis.The phytocompounds were screened for their druggability using Lipinski’s rule of five and subjected to Absorption,Distribution,Metabolism,Excretion,Toxicity(ADMET)and druglikeness analysis.The phytocompounds were docked against some validated drug targets at different stages of Plasmodium falciparum(hepatic,asexual,sexual,and vector targets)using PyRx software to analyze the inhibitory potential and protein-ligand interaction.Thereafter,the stability and flexibility of the best complexes were assessed through molecular dynamics simulations at 50ns using WebGRO.Result:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl exhibited a higher binding affinity and better stability throughout the simulation period with P.falciparum dihydrofolate reductase-thymidylate synthase and Plasmodium falciparum M1 alanyl aminopeptidase for asexual blood stage and gametocyte stage of Plasmodium falciparum,respectively than the existing drugs.Meanwhile,N-Ethyl-3-methoxy-4-methylphenethylamine was also found to have a higher binding affinity and more stability throughout the simulation period with P.falciparum purine nucleoside phosphorylase and Plasmodium falciparum gametocyte surface protein for Hepatic schizonts stage of Plasmodium falciparum and gametocyte transmission blocking stage,respectively,than the existing drugs.Conclusion:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl and N-Ethyl-3-methoxy-4 methylphenethylamine from A.paniculata are predicted as an antimalarial drug candidate.Thus,it is recommended that in vitro and in vivo bioassays be conducted on these hit compounds to validate these predictions.
基金Supported by the National Research Foundation of Korea,No.2020R1A2C1100891Soonchunhyang University Research Fund,No.2024-05-014.
文摘BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
文摘Background: A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum. However, the continuous spread of P. falciparum resistance to anti-malarial drugs is raising a serious problem in controlling Malaria to the vulnerable children’s immune system. In recent studies, Plasmodium falciparum Kelch 13 propeller gene (Pfk13) has been reported to develop resistance to artemisinin in South Asia. In this study, we checked Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) involved in chloroquine (CQ) resistance. Method: In this study, archived 280 samples were collected from Alupe primary school children in Busia, Western Kenya from May, 2016 to November, 2016. Genomic DNA was extracted using the MightyPrep reagent. The samples were investigated for P. falciparum positivity out of which 67 of them tested positive giving a prevalence rate of 24%. The sixty-seven were subjected to PCR amplification for the molecular marker resistance to Pfcrt. After PCR amplification, the amplicons were purified and sequenced using Sanger Sequencing. The sequence data were analyzed using BioEdit software to identify point mutations. Results: 14 samples sequences were analyzed on Bioedit software giving the following amino acid changes F76C, Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F). New mutations have been reported at position 76 leading to an amino acid change, one of Pfcrt gold standard biomarkers. However, amino acid changes Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F are newly reported giving an increase in Pfcrt prevalence of concern from zero to 5.0%. A phylogenetic evolutionary relationship was constructed as shown below. Generally, the results showed a continuous resistance of P.falciparum to Pfcrt which calls for robust continuous monitoring and surveillance. Conclusion: Due to the increase of the resistant Pfcrt gene prevalence, continuous development of new mutants against chloroquine indicates that there is need to repurpose anti-malarial drugs for future partner drugs.