目的观察低氧对P19细胞神经分化的影响,针对其向多巴胺能神经元分化的现象及机制进行探讨。方法实验分为常氧组(20%O2)和低氧组(3%O2,每天低氧10 m in)。对诱导分化的神经元采用免疫细胞化学染色方法鉴定。用流式细胞术及W estern b lo...目的观察低氧对P19细胞神经分化的影响,针对其向多巴胺能神经元分化的现象及机制进行探讨。方法实验分为常氧组(20%O2)和低氧组(3%O2,每天低氧10 m in)。对诱导分化的神经元采用免疫细胞化学染色方法鉴定。用流式细胞术及W estern b lot检测多巴胺能神经元,高效液相色谱法测定分泌的多巴胺。用RT-PCR技术检测低氧诱导因子HIF-1αmRNA水平。结果①在分化的P19细胞中,低氧组神经元含量高于常氧组(P<0.05),低氧组多巴胺能神经元含量及所分泌的多巴胺显著高于常氧组(P<0.001);②低氧组诱导期HIF-1αmRNA表达水平明显高于常氧组。结论低氧可以促进P19细胞的神经分化,尤其促进P19细胞向多巴胺能神经元分化,HIF-1α可能在其中起了一定作用。展开更多
The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines(TCM) that have neuronal differentiation promoting effects, using P19 embryonic carcin...The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines(TCM) that have neuronal differentiation promoting effects, using P19 embryonic carcinoma cell as a cell-based model. First, the constructed plasmid(p Tα1-Luc) was transfected into P19 cells to establish a screening model. Second, several TCMs were screened using the established model and all-trans-retinoic acid as a positive control. Finally, the underlying molecular mechanism was explored using immunofluorescence staining, q T-PCR, and Western blot analysis. Our results indicated that the drug screen model was established successfully and that both honokiol and hyperoside induced P19 differentiation into neurons, with the possible molecular mechanism being modulating the Wnt signaling pathway. In conclusion, the drug screening model developed in the present study provides a rapid, cell-based screening platform for identifying natural compounds with neuronal differentiation effects.展开更多
Testicular germ cell tumors(TGCTs)are a cancer pharmacology success story with a majority of patients cured even in the highly advanced and metastatic setting.Successful treatment of TGCTs is primarily due to the exqu...Testicular germ cell tumors(TGCTs)are a cancer pharmacology success story with a majority of patients cured even in the highly advanced and metastatic setting.Successful treatment of TGCTs is primarily due to the exquisite responsiveness of this solid tumor to cisplatin-based therapy.However,a significant percentage of patients are,or become,refractory to cisplatin and die from progressive disease.Mechanisms for both clinical hypersensitivity and resistance have largely remained a mystery despite the promise of applying lessons to the majority of solid tumors that are not curable in the metastatic setting.Recently,this promise has been heightened by the realization that distinct(and perhaps pharmacologically replicable)epigenetic states,rather than fixed genetic alterations,may play dominant roles in not only TGCT etiology and progression but also their curability with conventional chemotherapies.In this review,it discusses potential mechanisms of TGCT cisplatin sensitivity and resistance to conventional chemotherapeutics.展开更多
文摘目的观察低氧对P19细胞神经分化的影响,针对其向多巴胺能神经元分化的现象及机制进行探讨。方法实验分为常氧组(20%O2)和低氧组(3%O2,每天低氧10 m in)。对诱导分化的神经元采用免疫细胞化学染色方法鉴定。用流式细胞术及W estern b lot检测多巴胺能神经元,高效液相色谱法测定分泌的多巴胺。用RT-PCR技术检测低氧诱导因子HIF-1αmRNA水平。结果①在分化的P19细胞中,低氧组神经元含量高于常氧组(P<0.05),低氧组多巴胺能神经元含量及所分泌的多巴胺显著高于常氧组(P<0.001);②低氧组诱导期HIF-1αmRNA表达水平明显高于常氧组。结论低氧可以促进P19细胞的神经分化,尤其促进P19细胞向多巴胺能神经元分化,HIF-1α可能在其中起了一定作用。
基金supported by the China National Key Hi-Tech Innovation Project for the R&D of Novel Drugs(No.2009ZX09302)National Natural Science Foundation of China(No.81271338)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130096110011)
文摘The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines(TCM) that have neuronal differentiation promoting effects, using P19 embryonic carcinoma cell as a cell-based model. First, the constructed plasmid(p Tα1-Luc) was transfected into P19 cells to establish a screening model. Second, several TCMs were screened using the established model and all-trans-retinoic acid as a positive control. Finally, the underlying molecular mechanism was explored using immunofluorescence staining, q T-PCR, and Western blot analysis. Our results indicated that the drug screen model was established successfully and that both honokiol and hyperoside induced P19 differentiation into neurons, with the possible molecular mechanism being modulating the Wnt signaling pathway. In conclusion, the drug screening model developed in the present study provides a rapid, cell-based screening platform for identifying natural compounds with neuronal differentiation effects.
基金This work was supported by NIHNational Cancer Institute grant(R01CA211875),(R03CA223709)a Reach Grant from the Alex’s Lemonade Stand Foundation(MJS).
文摘Testicular germ cell tumors(TGCTs)are a cancer pharmacology success story with a majority of patients cured even in the highly advanced and metastatic setting.Successful treatment of TGCTs is primarily due to the exquisite responsiveness of this solid tumor to cisplatin-based therapy.However,a significant percentage of patients are,or become,refractory to cisplatin and die from progressive disease.Mechanisms for both clinical hypersensitivity and resistance have largely remained a mystery despite the promise of applying lessons to the majority of solid tumors that are not curable in the metastatic setting.Recently,this promise has been heightened by the realization that distinct(and perhaps pharmacologically replicable)epigenetic states,rather than fixed genetic alterations,may play dominant roles in not only TGCT etiology and progression but also their curability with conventional chemotherapies.In this review,it discusses potential mechanisms of TGCT cisplatin sensitivity and resistance to conventional chemotherapeutics.