For large-sized AISI P20 steel block used as plastic die with a thickness of more than 200 mm, appropriate quenching processes are the key to obtain much thick hardened layer. In this paper, different quenching proces...For large-sized AISI P20 steel block used as plastic die with a thickness of more than 200 mm, appropriate quenching processes are the key to obtain much thick hardened layer. In this paper, different quenching processes of AISI P20 steel block such as oil quenching, direct water quenching, water quenching with precooling and water quenching with pre-cooling and self-tempering were numerically investigated by computer simulation based on the detailed discussion on the mathematical models of quenching processes including partial differential equations of heat transfer, thermal physical properties, latent heat, heat transfer coefficient and calculation of phase transformation, The results show that the water quenching with pre-cooling and self-tempering process can not only effectively avoid quenching cracks, but also obtain deeper harden depth than oil quenching.展开更多
Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysi...Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysis of phase transformation during heat treatment, further knowledge of designing proper heat treatment is obtained. Then the machinability of AISI P20+Ni steel under given heat treatment condition is studied and the influencing factors to their machinability are analyzed. It is shown that heat treatment designed by computer simulation of carbide transformation is applicable to AISI P20+Ni steel with good machinability; AISI P20+Ni steel with tempered sorbite treated by quenching & tempering has optimal machinability; normalizing at the temperature of 910°C & tempering can avoid cracking and result in acceptable machinability in small thickness module.展开更多
文摘For large-sized AISI P20 steel block used as plastic die with a thickness of more than 200 mm, appropriate quenching processes are the key to obtain much thick hardened layer. In this paper, different quenching processes of AISI P20 steel block such as oil quenching, direct water quenching, water quenching with precooling and water quenching with pre-cooling and self-tempering were numerically investigated by computer simulation based on the detailed discussion on the mathematical models of quenching processes including partial differential equations of heat transfer, thermal physical properties, latent heat, heat transfer coefficient and calculation of phase transformation, The results show that the water quenching with pre-cooling and self-tempering process can not only effectively avoid quenching cracks, but also obtain deeper harden depth than oil quenching.
基金supported by the key project of Science and Technology Commission of Shanghai Local Government(015211010)
文摘Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysis of phase transformation during heat treatment, further knowledge of designing proper heat treatment is obtained. Then the machinability of AISI P20+Ni steel under given heat treatment condition is studied and the influencing factors to their machinability are analyzed. It is shown that heat treatment designed by computer simulation of carbide transformation is applicable to AISI P20+Ni steel with good machinability; AISI P20+Ni steel with tempered sorbite treated by quenching & tempering has optimal machinability; normalizing at the temperature of 910°C & tempering can avoid cracking and result in acceptable machinability in small thickness module.