为了提高TiO_(2)薄膜的光学与电化学性能,文章利用一步水热法在P25纳米晶薄膜(P-film)的基础上制备了新颖的三维网络结构TiO_(2)纳米片薄膜(S-film)。通过场发射扫描电子显微镜(field emission scanning electron microscope,FESEM)和...为了提高TiO_(2)薄膜的光学与电化学性能,文章利用一步水热法在P25纳米晶薄膜(P-film)的基础上制备了新颖的三维网络结构TiO_(2)纳米片薄膜(S-film)。通过场发射扫描电子显微镜(field emission scanning electron microscope,FESEM)和场发射透射电子显微镜(field emission transmission electron microscope,FETEM)表征揭示S-film由P25颗粒转化而来,并可以通过水热时间调控S-film的厚度。紫外-可见漫反射光谱显示,在300~800 nm波长范围内S-film的引入有利于薄膜光散射性能的提升,且散射能力随着S-film薄膜厚度的增加而增强。光伏性能测试表明,一定厚度的S-film有利于提高染料敏化太阳能电池的光电转换效率,电化学阻抗谱进一步揭示S-film能够提高光生电子-空穴对的分离效率。展开更多
文摘为了提高TiO_(2)薄膜的光学与电化学性能,文章利用一步水热法在P25纳米晶薄膜(P-film)的基础上制备了新颖的三维网络结构TiO_(2)纳米片薄膜(S-film)。通过场发射扫描电子显微镜(field emission scanning electron microscope,FESEM)和场发射透射电子显微镜(field emission transmission electron microscope,FETEM)表征揭示S-film由P25颗粒转化而来,并可以通过水热时间调控S-film的厚度。紫外-可见漫反射光谱显示,在300~800 nm波长范围内S-film的引入有利于薄膜光散射性能的提升,且散射能力随着S-film薄膜厚度的增加而增强。光伏性能测试表明,一定厚度的S-film有利于提高染料敏化太阳能电池的光电转换效率,电化学阻抗谱进一步揭示S-film能够提高光生电子-空穴对的分离效率。