Based on the advantages of both Grid and peer-to-peer (P2P) networks, an overlay network in the Grid environment is constructed by P2P technologies by a modified version of the Chord protocol. In this mechanism, dif...Based on the advantages of both Grid and peer-to-peer (P2P) networks, an overlay network in the Grid environment is constructed by P2P technologies by a modified version of the Chord protocol. In this mechanism, different nodes' accesses to different resources are determined by their contribution. Therefore, the heterogeneous resources of virtual organizations in large-scale Grid can be effectively integrated, and the key node failure as well as system bottleneck in the traditional Grid environment is eliminated. The experimental results indicate that this management mechanism can achieve better average performance in the Grid environment and maintain the P2P characteristics as well.展开更多
This paper presents a resource scheduling approach in grid computing environment. Using P2P technology, this novel approach can schedule dynamic grid computing resources efficiently. Grid computing resources in differ...This paper presents a resource scheduling approach in grid computing environment. Using P2P technology, this novel approach can schedule dynamic grid computing resources efficiently. Grid computing resources in different domains are organized into a structured P2P overlay network. Available resource information is published in type of grid services. Task requests for computational resources are also presented as grid services. Problem of resources scheduling is translated into services discovery. Different from central scheduling approaches that collect available resources information, this Chord-based approach forwards task requests in the overlay network and discovers satisfied resources for these tasks. Using this approach, the computational resources of a grid system can be scheduled dynamically according to the real- time workload on each peer. Furthermore, the application of this approach is introduced into DDG, a grid system for drug discovery and design, to evaluate the performance. Experimental results show that computational resources of a grid system can be managed efficiently, and the system can hold a perfect load balance state and robustness.展开更多
基金The National Natural Science Foundation of China(No60573133)the National Basic Research Program of China (973Program)(No2003CB314801)
文摘Based on the advantages of both Grid and peer-to-peer (P2P) networks, an overlay network in the Grid environment is constructed by P2P technologies by a modified version of the Chord protocol. In this mechanism, different nodes' accesses to different resources are determined by their contribution. Therefore, the heterogeneous resources of virtual organizations in large-scale Grid can be effectively integrated, and the key node failure as well as system bottleneck in the traditional Grid environment is eliminated. The experimental results indicate that this management mechanism can achieve better average performance in the Grid environment and maintain the P2P characteristics as well.
文摘This paper presents a resource scheduling approach in grid computing environment. Using P2P technology, this novel approach can schedule dynamic grid computing resources efficiently. Grid computing resources in different domains are organized into a structured P2P overlay network. Available resource information is published in type of grid services. Task requests for computational resources are also presented as grid services. Problem of resources scheduling is translated into services discovery. Different from central scheduling approaches that collect available resources information, this Chord-based approach forwards task requests in the overlay network and discovers satisfied resources for these tasks. Using this approach, the computational resources of a grid system can be scheduled dynamically according to the real- time workload on each peer. Furthermore, the application of this approach is introduced into DDG, a grid system for drug discovery and design, to evaluate the performance. Experimental results show that computational resources of a grid system can be managed efficiently, and the system can hold a perfect load balance state and robustness.