Neural stem/progenitor cells:Radial glial cells constitute multipotent cells in the ventricular zone,lining the wall of the lateral ventricle of the embryonic brain.They have the capacity to give rise to cells belong...Neural stem/progenitor cells:Radial glial cells constitute multipotent cells in the ventricular zone,lining the wall of the lateral ventricle of the embryonic brain.They have the capacity to give rise to cells belonging to all three major linages(neurons,astrocytes and oligodendrocytes)of the nervous system(Tang and Illes,2017).展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under isch...Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.展开更多
AIM To evaluate the role of P2Y1 R in visceral hypersensitivity in rats with experimental irritable bowel syndrome.METHODS A rat model of irritable bowel syndrome was generated by intra-colonic administration of aceti...AIM To evaluate the role of P2Y1 R in visceral hypersensitivity in rats with experimental irritable bowel syndrome.METHODS A rat model of irritable bowel syndrome was generated by intra-colonic administration of acetic acid(AA) and assessed by histology and myeloperoxidase(m PO) activity assay. Then P2Y1 R expression in the colonic tissue was detected by Western blot. In order to explore the regulatory role of P2Y1 R in visceral hypersensitivity, an agonist(m RS2365) and an antagonist(m RS2179) of P2Y1 R were intra-colonically administered and effects were tested through a colorectal distension test. The abdominal withdrawal reflex and abdominal electromyography were tested during the course. RESULTS model assessment tests showed an obvious inflammatoryreaction that appeared on the 2^(nd) d after the AA injection, and the inflammatory reaction gradually recovered and almost disappeared on the 7^(th) d. The model finished on day 8 and showed a clear feature of IBS that had no organic lesion. The average expression of P2Y1 R was significantly higher in the AA group than in the na?ve group(0.319 ± 0.02 vs 0.094 ± 0.016, P < 0.001). m RS2365 could effectively raise the colonic hypersensitivity status at intervention doses of 10(AUC value from 0.30 ± 0.089 to 1.973 ± 0.127 mv?s, P < 0.01) and 100 μmol/L(AUC value from 0.290 ± 0.079 to 1.983 ± 0.195 mv?s, P < 0.01); m RS2179 could effectively reduce the hypersensitivity status at intervention dose of 100 μmol/L(from a mean baseline AUC value of 1.587 ± 0.099 mv?s to 0.140 ± 0.089 mv?s, P < 0.0001). Differences between the m RS2179 group(1.88 ± 1.45) and either the m RS2365 group(3.96 ± 0.19) or the combined treatment(m RS2179 and m RS2365) group(3.28 ± 0.11) were significant(P < 0.01).CONCLUSION P2Y1 R plays a regulatory role in visceral hypersensitivity in rats with experimental IBS. Specific antagonists of P2Y1 R may have potential therapeutic value in treating abdominal pain in IBS.展开更多
Microglia are the tissue resident macrophages of the brain and represent the sole immune population located in the parenchyma of the central nervous system (CNS). These cells are hidden be-tween neurons, astrocytes ...Microglia are the tissue resident macrophages of the brain and represent the sole immune population located in the parenchyma of the central nervous system (CNS). These cells are hidden be-tween neurons, astrocytes as well as oligodendrocytes and account for only 5-10% of CNS cells. Even though microglia were already identified in 1913 by the Spanish neuroanatomist Ramon y Cajal and further seminally investigated by his student Pio del Rio Hortega,展开更多
Two series of novel derivatives of4,5,6,7-tetrahydrothieno [3,2-c]pyridine were synthesized and structurally characterized by 1^H NMR and MS. Their in vivo antiplatelet aggregation activities were evaluated.
A series of novel derivatives of 4, 5, 6, 7-tetrahydrothieno [3,2-c] pyridine were synthesized and structurally characterized by 1H NMR and MS. Their in vivo anti-platelet aggregation activities were evaluated. A 3D-Q...A series of novel derivatives of 4, 5, 6, 7-tetrahydrothieno [3,2-c] pyridine were synthesized and structurally characterized by 1H NMR and MS. Their in vivo anti-platelet aggregation activities were evaluated. A 3D-QSAR was performed using the CoMFA and the CoMSIA. This model provided useful guidelines for novel anti-platelet thienopyridines design.展开更多
Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surfa...Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-Imediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.展开更多
基金supported by Deutsche Forschungsgemeinschaft(DFGIL 20/21-1)Sino-German Centre(GZ919)
文摘Neural stem/progenitor cells:Radial glial cells constitute multipotent cells in the ventricular zone,lining the wall of the lateral ventricle of the embryonic brain.They have the capacity to give rise to cells belonging to all three major linages(neurons,astrocytes and oligodendrocytes)of the nervous system(Tang and Illes,2017).
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
基金the National Natural Science Foundation of China (No. 30500189)
文摘Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.
基金Supported by MIMS(Shanghai)Ltd.of China,No.IDF-2013-07
文摘AIM To evaluate the role of P2Y1 R in visceral hypersensitivity in rats with experimental irritable bowel syndrome.METHODS A rat model of irritable bowel syndrome was generated by intra-colonic administration of acetic acid(AA) and assessed by histology and myeloperoxidase(m PO) activity assay. Then P2Y1 R expression in the colonic tissue was detected by Western blot. In order to explore the regulatory role of P2Y1 R in visceral hypersensitivity, an agonist(m RS2365) and an antagonist(m RS2179) of P2Y1 R were intra-colonically administered and effects were tested through a colorectal distension test. The abdominal withdrawal reflex and abdominal electromyography were tested during the course. RESULTS model assessment tests showed an obvious inflammatoryreaction that appeared on the 2^(nd) d after the AA injection, and the inflammatory reaction gradually recovered and almost disappeared on the 7^(th) d. The model finished on day 8 and showed a clear feature of IBS that had no organic lesion. The average expression of P2Y1 R was significantly higher in the AA group than in the na?ve group(0.319 ± 0.02 vs 0.094 ± 0.016, P < 0.001). m RS2365 could effectively raise the colonic hypersensitivity status at intervention doses of 10(AUC value from 0.30 ± 0.089 to 1.973 ± 0.127 mv?s, P < 0.01) and 100 μmol/L(AUC value from 0.290 ± 0.079 to 1.983 ± 0.195 mv?s, P < 0.01); m RS2179 could effectively reduce the hypersensitivity status at intervention dose of 100 μmol/L(from a mean baseline AUC value of 1.587 ± 0.099 mv?s to 0.140 ± 0.089 mv?s, P < 0.0001). Differences between the m RS2179 group(1.88 ± 1.45) and either the m RS2365 group(3.96 ± 0.19) or the combined treatment(m RS2179 and m RS2365) group(3.28 ± 0.11) were significant(P < 0.01).CONCLUSION P2Y1 R plays a regulatory role in visceral hypersensitivity in rats with experimental IBS. Specific antagonists of P2Y1 R may have potential therapeutic value in treating abdominal pain in IBS.
基金supported by the Deutsche Forschungsgemeinschaft(DFGMI1328)
文摘Microglia are the tissue resident macrophages of the brain and represent the sole immune population located in the parenchyma of the central nervous system (CNS). These cells are hidden be-tween neurons, astrocytes as well as oligodendrocytes and account for only 5-10% of CNS cells. Even though microglia were already identified in 1913 by the Spanish neuroanatomist Ramon y Cajal and further seminally investigated by his student Pio del Rio Hortega,
文摘Two series of novel derivatives of4,5,6,7-tetrahydrothieno [3,2-c]pyridine were synthesized and structurally characterized by 1^H NMR and MS. Their in vivo antiplatelet aggregation activities were evaluated.
文摘A series of novel derivatives of 4, 5, 6, 7-tetrahydrothieno [3,2-c] pyridine were synthesized and structurally characterized by 1H NMR and MS. Their in vivo anti-platelet aggregation activities were evaluated. A 3D-QSAR was performed using the CoMFA and the CoMSIA. This model provided useful guidelines for novel anti-platelet thienopyridines design.
基金Supported by An INSERM Avenir Grant (Martinez LO)ANR (Martinez LO and Lichtenstein L, #GENO 102 01)+1 种基金the French Association pour la Recherche sur le Cancer (Vantourout P and Champagne E, #3711-3913-4847)An INSERM young scientist fellowship (Pons V)
文摘Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-Imediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.