Trying to transgraft the idea of adjusting polyoxometallates′ micro-structures by rationally designing structure building units composed of ligand and "secondary metal" to the synthesis of open-framework zi...Trying to transgraft the idea of adjusting polyoxometallates′ micro-structures by rationally designing structure building units composed of ligand and "secondary metal" to the synthesis of open-framework zinc phosphate results in a novel 1-D hybrid zinc phosphate, (2,2′-bipy) 2Zn 2(PO 4H)·(PO 4H 2) 2(FJ-10: Fujian Institute of Research on the Structure of Matter). X-ray single crystal analysis reveals FJ-10 belongs to a triclinic crystal system, space group P-1, a=1.038 18(6) nm, b= 1.230 41(7) nm, c=1.234 81(7) nm, α=97.207 0(10)°, β=109.411 0(10)°, γ=113.081 0(10)°, V=1.307 79(13) nm 3, R 1=0.039 9, wR 2=0.101 3. The topology structure of FJ-10′s framework is characterized by PO 3(OH) bridged 4-rings. FJ-10 exemplifies firstly the π-π stacking of hybrid chains whose structure-building units are involved in ZnO 3N 2. FJ-10 predicts the novel hybrid transition phosphates.展开更多
The H6P2W18O62/TiO2composite catalyst was prepared by the combination of nonionic surfactant C18H37(OCH2CH2)10OH(Brij-76)as the template and the sol-gel method.As-synthesized composite was characterized by FT-TR,SEM,N...The H6P2W18O62/TiO2composite catalyst was prepared by the combination of nonionic surfactant C18H37(OCH2CH2)10OH(Brij-76)as the template and the sol-gel method.As-synthesized composite was characterized by FT-TR,SEM,N2 absorption-desorption and NH3-TPD.The results showed that the composite H6P2W18O62/TiO2 was mesoporous material(ca.3.3 nm),and large surface area(99.78 m2/g).Additionally,the aggregation of TiO2 particles was effectively inhibited,and the surface acidity was increased substantially.The photocatalytic elimination of monochlorobenzene was used as model reaction to evaluate the photocatalytic activity of the composite catalyst under visible light separately.Photocatalytic experimental results showed that the composite H6P2W18O62/TiO2 can effectively degradate monochlorobenzene.展开更多
利用水热合成法合成了分子组成为(C6H11NH3)5H(P2Mo5O23)4H2O的杂多化合物, 用单晶X-ray衍射方法测定了它的结构,该晶体属于单斜晶系,空间群P21/c, a = 12.830(3), b = 14.848(3), c = 25.258(5) ? b = 92.95(3), Mr = 1483.62, V = 48...利用水热合成法合成了分子组成为(C6H11NH3)5H(P2Mo5O23)4H2O的杂多化合物, 用单晶X-ray衍射方法测定了它的结构,该晶体属于单斜晶系,空间群P21/c, a = 12.830(3), b = 14.848(3), c = 25.258(5) ? b = 92.95(3), Mr = 1483.62, V = 4805.1(17) 3, Z = 4, Dc = 2.051 g/cm3, m = 1.431 mm-1, F(000) = 3000, I >2s(I) 的可观察衍射点4426个, 最终结构偏差因子R = 0.0464, wR = 0.0801, S = 0.731。在[P2Mo5O23]6-杂多阴离子中5个MoO6八面体通过共边和共角相连, 形成1个近似的五角平面骨架, 2个PO4四面体加在五角平面的两侧。热性质研究表明杂多阴离子骨架在547.4 ℃左右分解。展开更多
目的合成环己酮3-氯-1,2-丙二醇缩酮。方法采用浸渍法制备了H6P2W18O62/TiO2-SiO2催化剂,并采用FT-IR、XRD、SEM对其进行了表征。以环己酮和3-氯-1,2-丙二醇为原料,催化合成环己酮3-氯-1,2-丙二醇缩酮,采用FT-IR、1 H NMR、13 C NMR等...目的合成环己酮3-氯-1,2-丙二醇缩酮。方法采用浸渍法制备了H6P2W18O62/TiO2-SiO2催化剂,并采用FT-IR、XRD、SEM对其进行了表征。以环己酮和3-氯-1,2-丙二醇为原料,催化合成环己酮3-氯-1,2-丙二醇缩酮,采用FT-IR、1 H NMR、13 C NMR等表征手段来分析合成产物为环己酮3-氯-1,2-丙二醇缩酮。结果在酮醇摩尔比为1∶1.4,带水剂环己烷用量8mL,催化剂用量为反应物总质量的2.0%,反应时间1.0h的条件下,缩酮收率可达85.0%。催化剂重复使用5次后收率有72.6%。结论 H6P2W18O62/TiO2-SiO2催化剂对合成环己酮3-氯-1,2-丙二醇缩酮不仅反应时间短,催化剂用量少,而且产品收率高。展开更多
文摘Trying to transgraft the idea of adjusting polyoxometallates′ micro-structures by rationally designing structure building units composed of ligand and "secondary metal" to the synthesis of open-framework zinc phosphate results in a novel 1-D hybrid zinc phosphate, (2,2′-bipy) 2Zn 2(PO 4H)·(PO 4H 2) 2(FJ-10: Fujian Institute of Research on the Structure of Matter). X-ray single crystal analysis reveals FJ-10 belongs to a triclinic crystal system, space group P-1, a=1.038 18(6) nm, b= 1.230 41(7) nm, c=1.234 81(7) nm, α=97.207 0(10)°, β=109.411 0(10)°, γ=113.081 0(10)°, V=1.307 79(13) nm 3, R 1=0.039 9, wR 2=0.101 3. The topology structure of FJ-10′s framework is characterized by PO 3(OH) bridged 4-rings. FJ-10 exemplifies firstly the π-π stacking of hybrid chains whose structure-building units are involved in ZnO 3N 2. FJ-10 predicts the novel hybrid transition phosphates.
文摘The H6P2W18O62/TiO2composite catalyst was prepared by the combination of nonionic surfactant C18H37(OCH2CH2)10OH(Brij-76)as the template and the sol-gel method.As-synthesized composite was characterized by FT-TR,SEM,N2 absorption-desorption and NH3-TPD.The results showed that the composite H6P2W18O62/TiO2 was mesoporous material(ca.3.3 nm),and large surface area(99.78 m2/g).Additionally,the aggregation of TiO2 particles was effectively inhibited,and the surface acidity was increased substantially.The photocatalytic elimination of monochlorobenzene was used as model reaction to evaluate the photocatalytic activity of the composite catalyst under visible light separately.Photocatalytic experimental results showed that the composite H6P2W18O62/TiO2 can effectively degradate monochlorobenzene.
文摘目的合成环己酮3-氯-1,2-丙二醇缩酮。方法采用浸渍法制备了H6P2W18O62/TiO2-SiO2催化剂,并采用FT-IR、XRD、SEM对其进行了表征。以环己酮和3-氯-1,2-丙二醇为原料,催化合成环己酮3-氯-1,2-丙二醇缩酮,采用FT-IR、1 H NMR、13 C NMR等表征手段来分析合成产物为环己酮3-氯-1,2-丙二醇缩酮。结果在酮醇摩尔比为1∶1.4,带水剂环己烷用量8mL,催化剂用量为反应物总质量的2.0%,反应时间1.0h的条件下,缩酮收率可达85.0%。催化剂重复使用5次后收率有72.6%。结论 H6P2W18O62/TiO2-SiO2催化剂对合成环己酮3-氯-1,2-丙二醇缩酮不仅反应时间短,催化剂用量少,而且产品收率高。