In this paper, we used SVM method to detect P300 signal. Before training a classification parameter for the SVM, several preprocessing operations were applied to the data including filtering, downsampling, single tria...In this paper, we used SVM method to detect P300 signal. Before training a classification parameter for the SVM, several preprocessing operations were applied to the data including filtering, downsampling, single trial extraction, windsorizing, electrode selection et al. With the SVM algorithm, the classification accuracy could be up to above 80%. In some cases, the accuracy could reach 100%. It is suitable to use SVM for P300 EEG recognition in the P300-based brain-computer interface (BCI) system. Our further work will include the improvement to yield higher classification accuracy using fewer trials.展开更多
基金Natural Science Foundation of Shandong Provincegrant number:Y2007G31
文摘In this paper, we used SVM method to detect P300 signal. Before training a classification parameter for the SVM, several preprocessing operations were applied to the data including filtering, downsampling, single trial extraction, windsorizing, electrode selection et al. With the SVM algorithm, the classification accuracy could be up to above 80%. In some cases, the accuracy could reach 100%. It is suitable to use SVM for P300 EEG recognition in the P300-based brain-computer interface (BCI) system. Our further work will include the improvement to yield higher classification accuracy using fewer trials.