Wortmannin, a known inhibitor of phosphoinositide 3-kinases(PI3 Ks), their low selectivity and high toxicity is still problematic and less is known about their effects on PI3 Ks in cellular systems. Hence, we have syn...Wortmannin, a known inhibitor of phosphoinositide 3-kinases(PI3 Ks), their low selectivity and high toxicity is still problematic and less is known about their effects on PI3 Ks in cellular systems. Hence, we have synthesized a series of multifunctional wortmannin probes with the ability to self-activate, by installing a clickable handle at C11 site, and secondary amine and cancer-targeting moiety at C20 site respectively. MTT assay first confirmed that self-activating probes have better inhibition potency and biotin enhanced their cancer cell uptake. Further experiments showed most of probes can target PI3 K/Akt/mTOR pathway with prolonged turn-over time. Protein profiling and pull-down results were observed that the derivatives not only labelled four PI3 Ks with selectivity, but also engaged in covalent interactions with numerous cellular proteins which could be the major reason of their high toxicity.展开更多
基金financially supported by the Natural Science Foundation of Zhejiang Province (Nos. LQ16B020003, LY17B060009)the National Natural Science Foundation of China (Nos. 21708034, 21472172, 81672508, 61505076)Jiangsu Provincial Foundation for Distinguished Young Scholars (No. BK20170041)
文摘Wortmannin, a known inhibitor of phosphoinositide 3-kinases(PI3 Ks), their low selectivity and high toxicity is still problematic and less is known about their effects on PI3 Ks in cellular systems. Hence, we have synthesized a series of multifunctional wortmannin probes with the ability to self-activate, by installing a clickable handle at C11 site, and secondary amine and cancer-targeting moiety at C20 site respectively. MTT assay first confirmed that self-activating probes have better inhibition potency and biotin enhanced their cancer cell uptake. Further experiments showed most of probes can target PI3 K/Akt/mTOR pathway with prolonged turn-over time. Protein profiling and pull-down results were observed that the derivatives not only labelled four PI3 Ks with selectivity, but also engaged in covalent interactions with numerous cellular proteins which could be the major reason of their high toxicity.